Reformated code

master_sq9mdd
Łukasz Nidecki 2021-06-11 00:29:07 +02:00
parent d9ae7f0fd0
commit 29d151b1e9
1 changed files with 301 additions and 339 deletions

View File

@ -10,113 +10,108 @@ byte _lastSNR = 0;
// Interrupt vectors for the 3 Arduino interrupt pins
// Each interrupt can be handled by a different instance of BG_RF95, allowing you to have
// 2 or more LORAs per Arduino
BG_RF95* BG_RF95::_deviceForInterrupt[BG_RF95_NUM_INTERRUPTS] = {0, 0, 0};
BG_RF95 *BG_RF95::_deviceForInterrupt[BG_RF95_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t BG_RF95::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// These are indexed by the values of ModemConfigChoice
// Stored in flash (program) memory to save SRAM
PROGMEM static const BG_RF95::ModemConfig MODEM_CONFIG_TABLE[] =
{
// 1d, 1e, 26
{ 0x72, 0x74, 0x00}, // Bw125Cr45Sf128 (the chip default)
{ 0x78, 0xc4, 0x00}, // Bw125Cr48Sf4096
{ 0x76, 0x94, 0x04}, // Bw125Cr47Sf512
{ 0x72, 0xb4, 0x00}, // Bw125Cr45Sf2048
{ 0x88, 0xc4, 0x00}, // Bw250Cr48Sf4096
};
{
// 1d, 1e, 26
{0x72, 0x74, 0x00}, // Bw125Cr45Sf128 (the chip default)
{0x78, 0xc4, 0x00}, // Bw125Cr48Sf4096
{0x76, 0x94, 0x04}, // Bw125Cr47Sf512
{0x72, 0xb4, 0x00}, // Bw125Cr45Sf2048
{0x88, 0xc4, 0x00}, // Bw250Cr48Sf4096
};
BG_RF95::BG_RF95(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI& spi)
:
RHSPIDriver(slaveSelectPin, spi),
_rxBufValid(0)
{
_interruptPin = interruptPin;
_myInterruptIndex = 0xff; // Not allocated yet
BG_RF95::BG_RF95(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI &spi)
:
RHSPIDriver(slaveSelectPin, spi),
_rxBufValid(0) {
_interruptPin = interruptPin;
_myInterruptIndex = 0xff; // Not allocated yet
}
bool BG_RF95::init()
{
if (!RHSPIDriver::init())
return false;
//Serial.println("RHSPIDriver::init completed");
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
bool BG_RF95::init() {
if (!RHSPIDriver::init())
return false;
//Serial.println("RHSPIDriver::init completed");
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
interruptNumber = _interruptPin;
#endif
//Serial.println("Attach Interrupt completed");
//Serial.println("Attach Interrupt completed");
// No way to check the device type :-(
// No way to check the device type :-(
// Set sleep mode, so we can also set LORA mode:
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_SLEEP | BG_RF95_LONG_RANGE_MODE);
delay(10); // Wait for sleep mode to take over from say, CAD
// Check we are in sleep mode, with LORA set
if (spiRead(BG_RF95_REG_01_OP_MODE) != (BG_RF95_MODE_SLEEP | BG_RF95_LONG_RANGE_MODE))
{
//Serial.println(spiRead(BG_RF95_REG_01_OP_MODE), HEX);
return false; // No device present?
}
// Set sleep mode, so we can also set LORA mode:
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_SLEEP | BG_RF95_LONG_RANGE_MODE);
delay(10); // Wait for sleep mode to take over from say, CAD
// Check we are in sleep mode, with LORA set
if (spiRead(BG_RF95_REG_01_OP_MODE) != (BG_RF95_MODE_SLEEP | BG_RF95_LONG_RANGE_MODE)) {
//Serial.println(spiRead(BG_RF95_REG_01_OP_MODE), HEX);
return false; // No device present?
}
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knwledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff)
{
// First run, no interrupt allocated yet
if (_interruptCount <= BG_RF95_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, RISING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, RISING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, RISING);
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knwledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff) {
// First run, no interrupt allocated yet
if (_interruptCount <= BG_RF95_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
{
//Serial.println("Interrupt vector too many vectors");
return false; // Too many devices, not enough interrupt vectors
}
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, RISING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, RISING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, RISING);
else {
//Serial.println("Interrupt vector too many vectors");
return false; // Too many devices, not enough interrupt vectors
}
// Set up FIFO
// We configure so that we can use the entire 256 byte FIFO for either receive
// or transmit, but not both at the same time
spiWrite(BG_RF95_REG_0E_FIFO_TX_BASE_ADDR, 0);
spiWrite(BG_RF95_REG_0F_FIFO_RX_BASE_ADDR, 0);
// Set up FIFO
// We configure so that we can use the entire 256 byte FIFO for either receive
// or transmit, but not both at the same time
spiWrite(BG_RF95_REG_0E_FIFO_TX_BASE_ADDR, 0);
spiWrite(BG_RF95_REG_0F_FIFO_RX_BASE_ADDR, 0);
// Packet format is preamble + explicit-header + payload + crc
// Explicit Header Mode
// payload is TO + FROM + ID + FLAGS + message data
// RX mode is implmented with RXCONTINUOUS
// max message data length is 255 - 4 = 251 octets
// Packet format is preamble + explicit-header + payload + crc
// Explicit Header Mode
// payload is TO + FROM + ID + FLAGS + message data
// RX mode is implmented with RXCONTINUOUS
// max message data length is 255 - 4 = 251 octets
setModeIdle();
setModeIdle();
// Set up default configuration
// No Sync Words in LORA mode.
setModemConfig(Bw125Cr45Sf128); // Radio default
// Set up default configuration
// No Sync Words in LORA mode.
setModemConfig(Bw125Cr45Sf128); // Radio default
// setModemConfig(Bw125Cr48Sf4096); // slow and reliable?
setPreambleLength(8); // Default is 8
// An innocuous ISM frequency, same as RF22's
setFrequency(433.850);
// Lowish power
setTxPower(23);
setPreambleLength(8); // Default is 8
// An innocuous ISM frequency, same as RF22's
setFrequency(433.850);
// Lowish power
setTxPower(23);
return true;
return true;
}
// C++ level interrupt handler for this instance
@ -124,329 +119,296 @@ bool BG_RF95::init()
// On MiniWirelessLoRa, only one of the several interrupt lines (DI0) from the RFM95 is usefuly
// connnected to the processor.
// We use this to get RxDone and TxDone interrupts
void BG_RF95::handleInterrupt()
{
// Read the interrupt register
//Serial.println("HandleInterrupt");
uint8_t irq_flags = spiRead(BG_RF95_REG_12_IRQ_FLAGS);
if (_mode == RHModeRx && irq_flags & (BG_RF95_RX_TIMEOUT | BG_RF95_PAYLOAD_CRC_ERROR))
{
_rxBad++;
}
else if (_mode == RHModeRx && irq_flags & BG_RF95_RX_DONE)
{
// Have received a packet
uint8_t len = spiRead(BG_RF95_REG_13_RX_NB_BYTES);
// Reset the fifo read ptr to the beginning of the packet
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, spiRead(BG_RF95_REG_10_FIFO_RX_CURRENT_ADDR));
spiBurstRead(BG_RF95_REG_00_FIFO, _buf, len);
_bufLen = len;
spiWrite(BG_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
// Remember the RSSI of this packet
// this is according to the doc, but is it really correct?
// weakest receiveable signals are reported RSSI at about -66
_lastRssi = spiRead(BG_RF95_REG_1A_PKT_RSSI_VALUE) - 137;
_lastSNR = spiRead(BG_RF95_REG_19_PKT_SNR_VALUE);
// We have received a message.
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
}
else if (_mode == RHModeTx && irq_flags & BG_RF95_TX_DONE)
{
_txGood++;
setModeIdle();
}
void BG_RF95::handleInterrupt() {
// Read the interrupt register
//Serial.println("HandleInterrupt");
uint8_t irq_flags = spiRead(BG_RF95_REG_12_IRQ_FLAGS);
if (_mode == RHModeRx && irq_flags & (BG_RF95_RX_TIMEOUT | BG_RF95_PAYLOAD_CRC_ERROR)) {
_rxBad++;
} else if (_mode == RHModeRx && irq_flags & BG_RF95_RX_DONE) {
// Have received a packet
uint8_t len = spiRead(BG_RF95_REG_13_RX_NB_BYTES);
// Reset the fifo read ptr to the beginning of the packet
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, spiRead(BG_RF95_REG_10_FIFO_RX_CURRENT_ADDR));
spiBurstRead(BG_RF95_REG_00_FIFO, _buf, len);
_bufLen = len;
spiWrite(BG_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
// Remember the RSSI of this packet
// this is according to the doc, but is it really correct?
// weakest receiveable signals are reported RSSI at about -66
_lastRssi = spiRead(BG_RF95_REG_1A_PKT_RSSI_VALUE) - 137;
_lastSNR = spiRead(BG_RF95_REG_19_PKT_SNR_VALUE);
// We have received a message.
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
} else if (_mode == RHModeTx && irq_flags & BG_RF95_TX_DONE) {
_txGood++;
setModeIdle();
}
spiWrite(BG_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
}
// These are low level functions that call the interrupt handler for the correct
// instance of BG_RF95.
// 3 interrupts allows us to have 3 different devices
void BG_RF95::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
void BG_RF95::isr0() {
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
}
void BG_RF95::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
void BG_RF95::isr1() {
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
}
void BG_RF95::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
void BG_RF95::isr2() {
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
}
// Check whether the latest received message is complete and uncorrupted
void BG_RF95::validateRxBuf()
{
_promiscuous = 1;
if (_bufLen < 4)
return; // Too short to be a real message
// Extract the 4 headers
//Serial.println("validateRxBuf >= 4");
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_rxBufValid = true;
}
void BG_RF95::validateRxBuf() {
_promiscuous = 1;
if (_bufLen < 4)
return; // Too short to be a real message
// Extract the 4 headers
//Serial.println("validateRxBuf >= 4");
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS) {
_rxGood++;
_rxBufValid = true;
}
}
bool BG_RF95::available()
{
if (_mode == RHModeTx)
return false;
setModeRx();
return _rxBufValid; // Will be set by the interrupt handler when a good message is received
bool BG_RF95::available() {
if (_mode == RHModeTx)
return false;
setModeRx();
return _rxBufValid; // Will be set by the interrupt handler when a good message is received
}
void BG_RF95::clearRxBuf()
{
ATOMIC_BLOCK_START;
_rxBufValid = false;
_bufLen = 0;
ATOMIC_BLOCK_END;
void BG_RF95::clearRxBuf() {
ATOMIC_BLOCK_START;
_rxBufValid = false;
_bufLen = 0;
ATOMIC_BLOCK_END;
}
// BG 3 Byte header
bool BG_RF95::recvAPRS(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
ATOMIC_BLOCK_START;
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen-BG_RF95_HEADER_LEN)
*len = _bufLen-(BG_RF95_HEADER_LEN-1);
memcpy(buf, _buf+(BG_RF95_HEADER_LEN-1), *len); // BG only 3 Byte header (-1)
ATOMIC_BLOCK_END;
}
clearRxBuf(); // This message accepted and cleared
return true;
bool BG_RF95::recvAPRS(uint8_t *buf, uint8_t *len) {
if (!available())
return false;
if (buf && len) {
ATOMIC_BLOCK_START;
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen - BG_RF95_HEADER_LEN)
*len = _bufLen - (BG_RF95_HEADER_LEN - 1);
memcpy(buf, _buf + (BG_RF95_HEADER_LEN - 1), *len); // BG only 3 Byte header (-1)
ATOMIC_BLOCK_END;
}
clearRxBuf(); // This message accepted and cleared
return true;
}
bool BG_RF95::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
ATOMIC_BLOCK_START;
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen-BG_RF95_HEADER_LEN)
*len = _bufLen-BG_RF95_HEADER_LEN;
memcpy(buf, _buf+BG_RF95_HEADER_LEN, *len);
ATOMIC_BLOCK_END;
}
clearRxBuf(); // This message accepted and cleared
return true;
bool BG_RF95::recv(uint8_t *buf, uint8_t *len) {
if (!available())
return false;
if (buf && len) {
ATOMIC_BLOCK_START;
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen - BG_RF95_HEADER_LEN)
*len = _bufLen - BG_RF95_HEADER_LEN;
memcpy(buf, _buf + BG_RF95_HEADER_LEN, *len);
ATOMIC_BLOCK_END;
}
clearRxBuf(); // This message accepted and cleared
return true;
}
uint8_t BG_RF95::lastSNR()
{
return(_lastSNR);
uint8_t BG_RF95::lastSNR() {
return (_lastSNR);
}
bool BG_RF95::send(const uint8_t* data, uint8_t len)
{
if (len > BG_RF95_MAX_MESSAGE_LEN)
return false;
bool BG_RF95::send(const uint8_t *data, uint8_t len) {
if (len > BG_RF95_MAX_MESSAGE_LEN)
return false;
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
// Position at the beginning of the FIFO
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderTo);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderId);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(BG_RF95_REG_00_FIFO, data, len);
spiWrite(BG_RF95_REG_22_PAYLOAD_LENGTH, len + BG_RF95_HEADER_LEN);
// Position at the beginning of the FIFO
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderTo);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderId);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(BG_RF95_REG_00_FIFO, data, len);
spiWrite(BG_RF95_REG_22_PAYLOAD_LENGTH, len + BG_RF95_HEADER_LEN);
setModeTx(); // Start the transmitter
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
setModeTx(); // Start the transmitter
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
}
bool BG_RF95::sendAPRS(const uint8_t* data, uint8_t len)
{
if (len > BG_RF95_MAX_MESSAGE_LEN)
return false;
bool BG_RF95::sendAPRS(const uint8_t *data, uint8_t len) {
if (len > BG_RF95_MAX_MESSAGE_LEN)
return false;
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
// Position at the beginning of the FIFO
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers for APRS
spiWrite(BG_RF95_REG_00_FIFO, '<');
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(BG_RF95_REG_00_FIFO, 0x1 );
//spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(BG_RF95_REG_00_FIFO, data, len);
spiWrite(BG_RF95_REG_22_PAYLOAD_LENGTH, len + BG_RF95_HEADER_LEN -1 ); // only 3 Byte header BG
// Position at the beginning of the FIFO
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers for APRS
spiWrite(BG_RF95_REG_00_FIFO, '<');
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(BG_RF95_REG_00_FIFO, 0x1);
//spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(BG_RF95_REG_00_FIFO, data, len);
spiWrite(BG_RF95_REG_22_PAYLOAD_LENGTH, len + BG_RF95_HEADER_LEN - 1); // only 3 Byte header BG
setModeTx(); // Start the transmitter
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
setModeTx(); // Start the transmitter
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
}
bool BG_RF95::printRegisters()
{
bool BG_RF95::printRegisters() {
#ifdef RH_HAVE_SERIAL
uint8_t registers[] = { 0x01, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x014, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x4d };
uint8_t registers[] = {0x01, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13,
0x014, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22,
0x23, 0x24, 0x25, 0x26, 0x27, 0x4d};
uint8_t i;
for (i = 0; i < sizeof(registers); i++)
{
Serial.print(registers[i], HEX);
Serial.print(": ");
Serial.println(spiRead(registers[i]), HEX);
}
uint8_t i;
for (i = 0; i < sizeof(registers); i++) {
Serial.print(registers[i], HEX);
Serial.print(": ");
Serial.println(spiRead(registers[i]), HEX);
}
#endif
return true;
return true;
}
uint8_t BG_RF95::maxMessageLength()
{
return BG_RF95_MAX_MESSAGE_LEN;
uint8_t BG_RF95::maxMessageLength() {
return BG_RF95_MAX_MESSAGE_LEN;
}
bool BG_RF95::setFrequency(float centre)
{
// Frf = FRF / FSTEP
uint32_t frf = (centre * 1000000.0) / BG_RF95_FSTEP;
spiWrite(BG_RF95_REG_06_FRF_MSB, (frf >> 16) & 0xff);
spiWrite(BG_RF95_REG_07_FRF_MID, (frf >> 8) & 0xff);
spiWrite(BG_RF95_REG_08_FRF_LSB, frf & 0xff);
bool BG_RF95::setFrequency(float centre) {
// Frf = FRF / FSTEP
uint32_t frf = (centre * 1000000.0) / BG_RF95_FSTEP;
spiWrite(BG_RF95_REG_06_FRF_MSB, (frf >> 16) & 0xff);
spiWrite(BG_RF95_REG_07_FRF_MID, (frf >> 8) & 0xff);
spiWrite(BG_RF95_REG_08_FRF_LSB, frf & 0xff);
return true;
return true;
}
void BG_RF95::setModeIdle()
{
if (_mode != RHModeIdle)
{
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_STDBY);
_mode = RHModeIdle;
}
void BG_RF95::setModeIdle() {
if (_mode != RHModeIdle) {
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_STDBY);
_mode = RHModeIdle;
}
}
bool BG_RF95::sleep()
{
if (_mode != RHModeSleep)
{
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_SLEEP);
_mode = RHModeSleep;
}
return true;
bool BG_RF95::sleep() {
if (_mode != RHModeSleep) {
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_SLEEP);
_mode = RHModeSleep;
}
return true;
}
void BG_RF95::setModeRx()
{
if (_mode != RHModeRx)
{
//Serial.println("SetModeRx");
_mode = RHModeRx;
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_RXCONTINUOUS);
spiWrite(BG_RF95_REG_40_DIO_MAPPING1, 0x00); // Interrupt on RxDone
}
void BG_RF95::setModeRx() {
if (_mode != RHModeRx) {
//Serial.println("SetModeRx");
_mode = RHModeRx;
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_RXCONTINUOUS);
spiWrite(BG_RF95_REG_40_DIO_MAPPING1, 0x00); // Interrupt on RxDone
}
}
void BG_RF95::setModeTx()
{
if (_mode != RHModeTx)
{
void BG_RF95::setModeTx() {
if (_mode != RHModeTx) {
_mode = RHModeTx; // set first to avoid possible race condition
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_TX);
spiWrite(BG_RF95_REG_40_DIO_MAPPING1, 0x40); // Interrupt on TxDone
}
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_TX);
spiWrite(BG_RF95_REG_40_DIO_MAPPING1, 0x40); // Interrupt on TxDone
}
}
void BG_RF95::setTxPower(int8_t power, bool useRFO)
{
// Sigh, different behaviours depending on whther the module use PA_BOOST or the RFO pin
// for the transmitter output
if (useRFO)
{
if (power > 19) power = 19;
if (power < -1) power = -1;
spiWrite(BG_RF95_REG_09_PA_CONFIG, BG_RF95_MAX_POWER | (power + 1));
} else {
if (power > 23) power = 23;
if (power < 5) power = 5;
void BG_RF95::setTxPower(int8_t power, bool useRFO) {
// Sigh, different behaviours depending on whther the module use PA_BOOST or the RFO pin
// for the transmitter output
if (useRFO) {
if (power > 19) power = 19;
if (power < -1) power = -1;
spiWrite(BG_RF95_REG_09_PA_CONFIG, BG_RF95_MAX_POWER | (power + 1));
} else {
if (power > 23) power = 23;
if (power < 5) power = 5;
// For BG_RF95_PA_DAC_ENABLE, manual says '+20dBm on PA_BOOST when OutputPower=0xf'
// BG_RF95_PA_DAC_ENABLE actually adds about 3dBm to all power levels. We will us it
// for 21, 22 and 23dBm -= 3;
}
if (power > 20) {
spiWrite(BG_RF95_REG_0B_OCP, ( BG_RF95_OCP_ON | BG_RF95_OCP_TRIM ) ); // Trim max current tp 240mA
spiWrite(BG_RF95_REG_4D_PA_DAC, BG_RF95_PA_DAC_ENABLE);
//power -= 3;
power = 23; // and set PA_DAC_ENABLE
// For BG_RF95_PA_DAC_ENABLE, manual says '+20dBm on PA_BOOST when OutputPower=0xf'
// BG_RF95_PA_DAC_ENABLE actually adds about 3dBm to all power levels. We will us it
// for 21, 22 and 23dBm -= 3;
}
if (power > 20) {
spiWrite(BG_RF95_REG_0B_OCP, (BG_RF95_OCP_ON | BG_RF95_OCP_TRIM)); // Trim max current tp 240mA
spiWrite(BG_RF95_REG_4D_PA_DAC, BG_RF95_PA_DAC_ENABLE);
//power -= 3;
power = 23; // and set PA_DAC_ENABLE
} else {
spiWrite(BG_RF95_REG_4D_PA_DAC, BG_RF95_PA_DAC_DISABLE);
}
} else {
spiWrite(BG_RF95_REG_4D_PA_DAC, BG_RF95_PA_DAC_DISABLE);
}
// RFM95/96/97/98 does not have RFO pins connected to anything. Only PA_BOOST
// pin is connected, so must use PA_BOOST
// Pout = 2 + OutputPower.
// The documentation is pretty confusing on this topic: PaSelect says the max power is 20dBm,
// but OutputPower claims it would be 17dBm.
// My measurements show 20dBm is correct
//spiWrite(BG_RF95_REG_09_PA_CONFIG, (BG_RF95_PA_SELECT | (power-5)) );
spiWrite(BG_RF95_REG_09_PA_CONFIG, (BG_RF95_PA_SELECT | BG_RF95_MAX_POWER | (power-5)) );
// RFM95/96/97/98 does not have RFO pins connected to anything. Only PA_BOOST
// pin is connected, so must use PA_BOOST
// Pout = 2 + OutputPower.
// The documentation is pretty confusing on this topic: PaSelect says the max power is 20dBm,
// but OutputPower claims it would be 17dBm.
// My measurements show 20dBm is correct
//spiWrite(BG_RF95_REG_09_PA_CONFIG, (BG_RF95_PA_SELECT | (power-5)) );
spiWrite(BG_RF95_REG_09_PA_CONFIG, (BG_RF95_PA_SELECT | BG_RF95_MAX_POWER | (power - 5)));
//}
//}
}
// Sets registers from a canned modem configuration structure
void BG_RF95::setModemRegisters(const ModemConfig* config)
{
spiWrite(BG_RF95_REG_1D_MODEM_CONFIG1, config->reg_1d);
spiWrite(BG_RF95_REG_1E_MODEM_CONFIG2, config->reg_1e);
spiWrite(BG_RF95_REG_26_MODEM_CONFIG3, config->reg_26);
void BG_RF95::setModemRegisters(const ModemConfig *config) {
spiWrite(BG_RF95_REG_1D_MODEM_CONFIG1, config->reg_1d);
spiWrite(BG_RF95_REG_1E_MODEM_CONFIG2, config->reg_1e);
spiWrite(BG_RF95_REG_26_MODEM_CONFIG3, config->reg_26);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
bool BG_RF95::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
bool BG_RF95::setModemConfig(ModemConfigChoice index) {
if (index > (signed int) (sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(BG_RF95::ModemConfig));
setModemRegisters(&cfg);
ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(BG_RF95::ModemConfig));
setModemRegisters(&cfg);
return true;
return true;
}
void BG_RF95::setPreambleLength(uint16_t bytes)
{
spiWrite(BG_RF95_REG_20_PREAMBLE_MSB, bytes >> 8);
spiWrite(BG_RF95_REG_21_PREAMBLE_LSB, bytes & 0xff);
void BG_RF95::setPreambleLength(uint16_t bytes) {
spiWrite(BG_RF95_REG_20_PREAMBLE_MSB, bytes >> 8);
spiWrite(BG_RF95_REG_21_PREAMBLE_LSB, bytes & 0xff);
}