LoRa APRS Tracker

Simple Code to use TTGO T-Beam as a LoRa APRS Tracker including OLED Display messages.
pull/2/head
oe3cjb 2018-11-25 21:07:34 +01:00
commit ba25825309
10 changed files with 2051 additions and 0 deletions

5
.gitignore vendored 100644
View File

@ -0,0 +1,5 @@
.pio
.pioenvs
.piolibdeps
.clang_complete
.gcc-flags.json

67
.travis.yml 100644
View File

@ -0,0 +1,67 @@
# Continuous Integration (CI) is the practice, in software
# engineering, of merging all developer working copies with a shared mainline
# several times a day < https://docs.platformio.org/page/ci/index.html >
#
# Documentation:
#
# * Travis CI Embedded Builds with PlatformIO
# < https://docs.travis-ci.com/user/integration/platformio/ >
#
# * PlatformIO integration with Travis CI
# < https://docs.platformio.org/page/ci/travis.html >
#
# * User Guide for `platformio ci` command
# < https://docs.platformio.org/page/userguide/cmd_ci.html >
#
#
# Please choose one of the following templates (proposed below) and uncomment
# it (remove "# " before each line) or use own configuration according to the
# Travis CI documentation (see above).
#
#
# Template #1: General project. Test it using existing `platformio.ini`.
#
# language: python
# python:
# - "2.7"
#
# sudo: false
# cache:
# directories:
# - "~/.platformio"
#
# install:
# - pip install -U platformio
# - platformio update
#
# script:
# - platformio run
#
# Template #2: The project is intended to be used as a library with examples.
#
# language: python
# python:
# - "2.7"
#
# sudo: false
# cache:
# directories:
# - "~/.platformio"
#
# env:
# - PLATFORMIO_CI_SRC=path/to/test/file.c
# - PLATFORMIO_CI_SRC=examples/file.ino
# - PLATFORMIO_CI_SRC=path/to/test/directory
#
# install:
# - pip install -U platformio
# - platformio update
#
# script:
# - platformio ci --lib="." --board=ID_1 --board=ID_2 --board=ID_N

39
include/README 100644
View File

@ -0,0 +1,39 @@
This directory is intended for project header files.
A header file is a file containing C declarations and macro definitions
to be shared between several project source files. You request the use of a
header file in your project source file (C, C++, etc) located in `src` folder
by including it, with the C preprocessing directive `#include'.
```src/main.c
#include "header.h"
int main (void)
{
...
}
```
Including a header file produces the same results as copying the header file
into each source file that needs it. Such copying would be time-consuming
and error-prone. With a header file, the related declarations appear
in only one place. If they need to be changed, they can be changed in one
place, and programs that include the header file will automatically use the
new version when next recompiled. The header file eliminates the labor of
finding and changing all the copies as well as the risk that a failure to
find one copy will result in inconsistencies within a program.
In C, the usual convention is to give header files names that end with `.h'.
It is most portable to use only letters, digits, dashes, and underscores in
header file names, and at most one dot.
Read more about using header files in official GCC documentation:
* Include Syntax
* Include Operation
* Once-Only Headers
* Computed Includes
https://gcc.gnu.org/onlinedocs/cpp/Header-Files.html

46
lib/README 100644
View File

@ -0,0 +1,46 @@
This directory is intended for project specific (private) libraries.
PlatformIO will compile them to static libraries and link into executable file.
The source code of each library should be placed in a an own separate directory
("lib/your_library_name/[here are source files]").
For example, see a structure of the following two libraries `Foo` and `Bar`:
|--lib
| |
| |--Bar
| | |--docs
| | |--examples
| | |--src
| | |- Bar.c
| | |- Bar.h
| | |- library.json (optional, custom build options, etc) https://docs.platformio.org/page/librarymanager/config.html
| |
| |--Foo
| | |- Foo.c
| | |- Foo.h
| |
| |- README --> THIS FILE
|
|- platformio.ini
|--src
|- main.c
and a contents of `src/main.c`:
```
#include <Foo.h>
#include <Bar.h>
int main (void)
{
...
}
```
PlatformIO Library Dependency Finder will find automatically dependent
libraries scanning project source files.
More information about PlatformIO Library Dependency Finder
- https://docs.platformio.org/page/librarymanager/ldf.html

14
platformio.ini 100644
View File

@ -0,0 +1,14 @@
; PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:heltec_wifi_lora_32]
platform = espressif32
board = heltec_wifi_lora_32
framework = arduino

452
src/BG_RF95.cpp 100644
View File

@ -0,0 +1,452 @@
// BG_RF95.cpp
//
// Copyright (C) 2011 Mike McCauley
// $Id: BG_RF95.cpp,v 1.11 2016/04/04 01:40:12 mikem Exp $
#include <BG_RF95.h>
byte _lastSNR = 0;
// Interrupt vectors for the 3 Arduino interrupt pins
// Each interrupt can be handled by a different instance of BG_RF95, allowing you to have
// 2 or more LORAs per Arduino
BG_RF95* BG_RF95::_deviceForInterrupt[BG_RF95_NUM_INTERRUPTS] = {0, 0, 0};
uint8_t BG_RF95::_interruptCount = 0; // Index into _deviceForInterrupt for next device
// These are indexed by the values of ModemConfigChoice
// Stored in flash (program) memory to save SRAM
PROGMEM static const BG_RF95::ModemConfig MODEM_CONFIG_TABLE[] =
{
// 1d, 1e, 26
{ 0x72, 0x74, 0x00}, // Bw125Cr45Sf128 (the chip default)
{ 0x92, 0x74, 0x00}, // Bw500Cr45Sf128
{ 0x48, 0x94, 0x00}, // Bw31_25Cr48Sf512
{ 0x78, 0xc4, 0x00}, // Bw125Cr48Sf4096
{ 0x72, 0xc7, 0x8}, // BG 125 cr45 sf12
};
BG_RF95::BG_RF95(uint8_t slaveSelectPin, uint8_t interruptPin, RHGenericSPI& spi)
:
RHSPIDriver(slaveSelectPin, spi),
_rxBufValid(0)
{
_interruptPin = interruptPin;
_myInterruptIndex = 0xff; // Not allocated yet
}
bool BG_RF95::init()
{
if (!RHSPIDriver::init())
return false;
//Serial.println("RHSPIDriver::init completed");
// Determine the interrupt number that corresponds to the interruptPin
int interruptNumber = digitalPinToInterrupt(_interruptPin);
if (interruptNumber == NOT_AN_INTERRUPT)
return false;
#ifdef RH_ATTACHINTERRUPT_TAKES_PIN_NUMBER
interruptNumber = _interruptPin;
#endif
//Serial.println("Attach Interrupt completed");
// No way to check the device type :-(
// Set sleep mode, so we can also set LORA mode:
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_SLEEP | BG_RF95_LONG_RANGE_MODE);
delay(10); // Wait for sleep mode to take over from say, CAD
// Check we are in sleep mode, with LORA set
if (spiRead(BG_RF95_REG_01_OP_MODE) != (BG_RF95_MODE_SLEEP | BG_RF95_LONG_RANGE_MODE))
{
//Serial.println(spiRead(BG_RF95_REG_01_OP_MODE), HEX);
return false; // No device present?
}
// Add by Adrien van den Bossche <vandenbo@univ-tlse2.fr> for Teensy
// ARM M4 requires the below. else pin interrupt doesn't work properly.
// On all other platforms, its innocuous, belt and braces
pinMode(_interruptPin, INPUT);
// Set up interrupt handler
// Since there are a limited number of interrupt glue functions isr*() available,
// we can only support a limited number of devices simultaneously
// ON some devices, notably most Arduinos, the interrupt pin passed in is actuallt the
// interrupt number. You have to figure out the interruptnumber-to-interruptpin mapping
// yourself based on knwledge of what Arduino board you are running on.
if (_myInterruptIndex == 0xff)
{
// First run, no interrupt allocated yet
if (_interruptCount <= BG_RF95_NUM_INTERRUPTS)
_myInterruptIndex = _interruptCount++;
else
return false; // Too many devices, not enough interrupt vectors
}
_deviceForInterrupt[_myInterruptIndex] = this;
if (_myInterruptIndex == 0)
attachInterrupt(interruptNumber, isr0, RISING);
else if (_myInterruptIndex == 1)
attachInterrupt(interruptNumber, isr1, RISING);
else if (_myInterruptIndex == 2)
attachInterrupt(interruptNumber, isr2, RISING);
else
{
//Serial.println("Interrupt vector too many vectors");
return false; // Too many devices, not enough interrupt vectors
}
// Set up FIFO
// We configure so that we can use the entire 256 byte FIFO for either receive
// or transmit, but not both at the same time
spiWrite(BG_RF95_REG_0E_FIFO_TX_BASE_ADDR, 0);
spiWrite(BG_RF95_REG_0F_FIFO_RX_BASE_ADDR, 0);
// Packet format is preamble + explicit-header + payload + crc
// Explicit Header Mode
// payload is TO + FROM + ID + FLAGS + message data
// RX mode is implmented with RXCONTINUOUS
// max message data length is 255 - 4 = 251 octets
setModeIdle();
// Set up default configuration
// No Sync Words in LORA mode.
setModemConfig(Bw125Cr45Sf128); // Radio default
// setModemConfig(Bw125Cr48Sf4096); // slow and reliable?
setPreambleLength(8); // Default is 8
// An innocuous ISM frequency, same as RF22's
setFrequency(433.800);
// Lowish power
setTxPower(20);
return true;
}
// C++ level interrupt handler for this instance
// LORA is unusual in that it has several interrupt lines, and not a single, combined one.
// On MiniWirelessLoRa, only one of the several interrupt lines (DI0) from the RFM95 is usefuly
// connnected to the processor.
// We use this to get RxDone and TxDone interrupts
void BG_RF95::handleInterrupt()
{
// Read the interrupt register
//Serial.println("HandleInterrupt");
uint8_t irq_flags = spiRead(BG_RF95_REG_12_IRQ_FLAGS);
if (_mode == RHModeRx && irq_flags & (BG_RF95_RX_TIMEOUT | BG_RF95_PAYLOAD_CRC_ERROR))
{
_rxBad++;
}
else if (_mode == RHModeRx && irq_flags & BG_RF95_RX_DONE)
{
// Have received a packet
uint8_t len = spiRead(BG_RF95_REG_13_RX_NB_BYTES);
// Reset the fifo read ptr to the beginning of the packet
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, spiRead(BG_RF95_REG_10_FIFO_RX_CURRENT_ADDR));
spiBurstRead(BG_RF95_REG_00_FIFO, _buf, len);
_bufLen = len;
spiWrite(BG_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
// Remember the RSSI of this packet
// this is according to the doc, but is it really correct?
// weakest receiveable signals are reported RSSI at about -66
_lastRssi = spiRead(BG_RF95_REG_1A_PKT_RSSI_VALUE) - 137;
_lastSNR = spiRead(BG_RF95_REG_19_PKT_SNR_VALUE);
// We have received a message.
validateRxBuf();
if (_rxBufValid)
setModeIdle(); // Got one
}
else if (_mode == RHModeTx && irq_flags & BG_RF95_TX_DONE)
{
_txGood++;
setModeIdle();
}
spiWrite(BG_RF95_REG_12_IRQ_FLAGS, 0xff); // Clear all IRQ flags
}
// These are low level functions that call the interrupt handler for the correct
// instance of BG_RF95.
// 3 interrupts allows us to have 3 different devices
void BG_RF95::isr0()
{
if (_deviceForInterrupt[0])
_deviceForInterrupt[0]->handleInterrupt();
}
void BG_RF95::isr1()
{
if (_deviceForInterrupt[1])
_deviceForInterrupt[1]->handleInterrupt();
}
void BG_RF95::isr2()
{
if (_deviceForInterrupt[2])
_deviceForInterrupt[2]->handleInterrupt();
}
// Check whether the latest received message is complete and uncorrupted
void BG_RF95::validateRxBuf()
{
_promiscuous = 1;
if (_bufLen < 4)
return; // Too short to be a real message
// Extract the 4 headers
//Serial.println("validateRxBuf >= 4");
_rxHeaderTo = _buf[0];
_rxHeaderFrom = _buf[1];
_rxHeaderId = _buf[2];
_rxHeaderFlags = _buf[3];
if (_promiscuous ||
_rxHeaderTo == _thisAddress ||
_rxHeaderTo == RH_BROADCAST_ADDRESS)
{
_rxGood++;
_rxBufValid = true;
}
}
bool BG_RF95::available()
{
if (_mode == RHModeTx)
return false;
setModeRx();
return _rxBufValid; // Will be set by the interrupt handler when a good message is received
}
void BG_RF95::clearRxBuf()
{
ATOMIC_BLOCK_START;
_rxBufValid = false;
_bufLen = 0;
ATOMIC_BLOCK_END;
}
// BG 3 Byte header
bool BG_RF95::recvAPRS(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
ATOMIC_BLOCK_START;
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen-BG_RF95_HEADER_LEN)
*len = _bufLen-(BG_RF95_HEADER_LEN-1);
memcpy(buf, _buf+(BG_RF95_HEADER_LEN-1), *len); // BG only 3 Byte header (-1)
ATOMIC_BLOCK_END;
}
clearRxBuf(); // This message accepted and cleared
return true;
}
bool BG_RF95::recv(uint8_t* buf, uint8_t* len)
{
if (!available())
return false;
if (buf && len)
{
ATOMIC_BLOCK_START;
// Skip the 4 headers that are at the beginning of the rxBuf
if (*len > _bufLen-BG_RF95_HEADER_LEN)
*len = _bufLen-BG_RF95_HEADER_LEN;
memcpy(buf, _buf+BG_RF95_HEADER_LEN, *len);
ATOMIC_BLOCK_END;
}
clearRxBuf(); // This message accepted and cleared
return true;
}
uint8_t BG_RF95::lastSNR()
{
return(_lastSNR);
}
bool BG_RF95::send(const uint8_t* data, uint8_t len)
{
if (len > BG_RF95_MAX_MESSAGE_LEN)
return false;
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
// Position at the beginning of the FIFO
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderTo);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderId);
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(BG_RF95_REG_00_FIFO, data, len);
spiWrite(BG_RF95_REG_22_PAYLOAD_LENGTH, len + BG_RF95_HEADER_LEN);
setModeTx(); // Start the transmitter
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
}
bool BG_RF95::sendAPRS(const uint8_t* data, uint8_t len)
{
if (len > BG_RF95_MAX_MESSAGE_LEN)
return false;
waitPacketSent(); // Make sure we dont interrupt an outgoing message
setModeIdle();
// Position at the beginning of the FIFO
spiWrite(BG_RF95_REG_0D_FIFO_ADDR_PTR, 0);
// The headers for APRS
spiWrite(BG_RF95_REG_00_FIFO, '<');
spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFrom);
spiWrite(BG_RF95_REG_00_FIFO, 0x1 );
//spiWrite(BG_RF95_REG_00_FIFO, _txHeaderFlags);
// The message data
spiBurstWrite(BG_RF95_REG_00_FIFO, data, len);
spiWrite(BG_RF95_REG_22_PAYLOAD_LENGTH, len + BG_RF95_HEADER_LEN -1 ); // only 3 Byte header BG
setModeTx(); // Start the transmitter
// when Tx is done, interruptHandler will fire and radio mode will return to STANDBY
return true;
}
bool BG_RF95::printRegisters()
{
#ifdef RH_HAVE_SERIAL
uint8_t registers[] = { 0x01, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x014, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x4d };
uint8_t i;
for (i = 0; i < sizeof(registers); i++)
{
Serial.print(registers[i], HEX);
Serial.print(": ");
Serial.println(spiRead(registers[i]), HEX);
}
#endif
return true;
}
uint8_t BG_RF95::maxMessageLength()
{
return BG_RF95_MAX_MESSAGE_LEN;
}
bool BG_RF95::setFrequency(float centre)
{
// Frf = FRF / FSTEP
uint32_t frf = (centre * 1000000.0) / BG_RF95_FSTEP;
spiWrite(BG_RF95_REG_06_FRF_MSB, (frf >> 16) & 0xff);
spiWrite(BG_RF95_REG_07_FRF_MID, (frf >> 8) & 0xff);
spiWrite(BG_RF95_REG_08_FRF_LSB, frf & 0xff);
return true;
}
void BG_RF95::setModeIdle()
{
if (_mode != RHModeIdle)
{
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_STDBY);
_mode = RHModeIdle;
}
}
bool BG_RF95::sleep()
{
if (_mode != RHModeSleep)
{
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_SLEEP);
_mode = RHModeSleep;
}
return true;
}
void BG_RF95::setModeRx()
{
if (_mode != RHModeRx)
{
//Serial.println("SetModeRx");
_mode = RHModeRx;
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_RXCONTINUOUS);
spiWrite(BG_RF95_REG_40_DIO_MAPPING1, 0x00); // Interrupt on RxDone
}
}
void BG_RF95::setModeTx()
{
if (_mode != RHModeTx)
{
_mode = RHModeTx; // set first to avoid possible race condition
spiWrite(BG_RF95_REG_01_OP_MODE, BG_RF95_MODE_TX);
spiWrite(BG_RF95_REG_40_DIO_MAPPING1, 0x40); // Interrupt on TxDone
}
}
void BG_RF95::setTxPower(int8_t power, bool useRFO)
{
// Sigh, different behaviours depending on whther the module use PA_BOOST or the RFO pin
// for the transmitter output
if (useRFO)
{
if (power > 14) power = 14;
if (power < -1) power = -1;
spiWrite(BG_RF95_REG_09_PA_CONFIG, BG_RF95_MAX_POWER | (power + 1));
} else {
if (power > 23) power = 23;
if (power < 5) power = 5;
// For BG_RF95_PA_DAC_ENABLE, manual says '+20dBm on PA_BOOST when OutputPower=0xf'
// BG_RF95_PA_DAC_ENABLE actually adds about 3dBm to all power levels. We will us it
// for 21, 22 and 23dBm -= 3;
}
if (power > 20) {
spiWrite(BG_RF95_REG_0B_OCP, ( BG_RF95_OCP_ON | BG_RF95_OCP_TRIM ) ); // Trim max current tp 240mA
spiWrite(BG_RF95_REG_4D_PA_DAC, BG_RF95_PA_DAC_ENABLE);
//power -= 3;
power = 20; // and set PA_DAC_ENABLE
} else {
spiWrite(BG_RF95_REG_4D_PA_DAC, BG_RF95_PA_DAC_DISABLE);
}
// RFM95/96/97/98 does not have RFO pins connected to anything. Only PA_BOOST
// pin is connected, so must use PA_BOOST
// Pout = 2 + OutputPower.
// The documentation is pretty confusing on this topic: PaSelect says the max power is 20dBm,
// but OutputPower claims it would be 17dBm.
// My measurements show 20dBm is correct
//spiWrite(BG_RF95_REG_09_PA_CONFIG, (BG_RF95_PA_SELECT | (power-5)) );
spiWrite(BG_RF95_REG_09_PA_CONFIG, (BG_RF95_PA_SELECT | BG_RF95_MAX_POWER | (power-5)) );
//}
}
// Sets registers from a canned modem configuration structure
void BG_RF95::setModemRegisters(const ModemConfig* config)
{
spiWrite(BG_RF95_REG_1D_MODEM_CONFIG1, config->reg_1d);
spiWrite(BG_RF95_REG_1E_MODEM_CONFIG2, config->reg_1e);
spiWrite(BG_RF95_REG_26_MODEM_CONFIG3, config->reg_26);
}
// Set one of the canned FSK Modem configs
// Returns true if its a valid choice
bool BG_RF95::setModemConfig(ModemConfigChoice index)
{
if (index > (signed int)(sizeof(MODEM_CONFIG_TABLE) / sizeof(ModemConfig)))
return false;
ModemConfig cfg;
memcpy_P(&cfg, &MODEM_CONFIG_TABLE[index], sizeof(BG_RF95::ModemConfig));
setModemRegisters(&cfg);
return true;
}
void BG_RF95::setPreambleLength(uint16_t bytes)
{
spiWrite(BG_RF95_REG_20_PREAMBLE_MSB, bytes >> 8);
spiWrite(BG_RF95_REG_21_PREAMBLE_LSB, bytes & 0xff);
}

743
src/BG_RF95.h 100644
View File

@ -0,0 +1,743 @@
// BG_RF95.h
//
// Definitions for HopeRF LoRa radios per:
// http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf
// http://www.hoperf.cn/upload/rfchip/RF96_97_98.pdf
//
// Author: Mike McCauley (mikem@airspayce.com)
// Copyright (C) 2014 Mike McCauley
// $Id: BG_RF95.h,v 1.11 2016/07/07 00:02:53 mikem Exp mikem $
// modified for Lora APRS Bernd Gasser OE1ACM
#ifndef BG_RF95_h
#define BG_RF95_h
#include <RHSPIDriver.h>
// This is the maximum number of interrupts the driver can support
// Most Arduinos can handle 2, Megas can handle more
#define BG_RF95_NUM_INTERRUPTS 3
// Max number of octets the LORA Rx/Tx FIFO can hold
#define BG_RF95_FIFO_SIZE 255
// This is the maximum number of bytes that can be carried by the LORA.
// We use some for headers, keeping fewer for RadioHead messages
#define BG_RF95_MAX_PAYLOAD_LEN BG_RF95_FIFO_SIZE
// The length of the headers we add.
// The headers are inside the LORA's payload
#define BG_RF95_HEADER_LEN 4
// This is the maximum message length that can be supported by this driver.
// Can be pre-defined to a smaller size (to save SRAM) prior to including this header
// Here we allow for 1 byte message length, 4 bytes headers, user data and 2 bytes of FCS
#ifndef BG_RF95_MAX_MESSAGE_LEN
#define BG_RF95_MAX_MESSAGE_LEN (BG_RF95_MAX_PAYLOAD_LEN - BG_RF95_HEADER_LEN)
#endif
// The crystal oscillator frequency of the module
#define BG_RF95_FXOSC 32000000.0
// The Frequency Synthesizer step = BG_RF95_FXOSC / 2^^19
#define BG_RF95_FSTEP (BG_RF95_FXOSC / 524288)
// Register names (LoRa Mode, from table 85)
#define BG_RF95_REG_00_FIFO 0x00
#define BG_RF95_REG_01_OP_MODE 0x01
#define BG_RF95_REG_02_RESERVED 0x02
#define BG_RF95_REG_03_RESERVED 0x03
#define BG_RF95_REG_04_RESERVED 0x04
#define BG_RF95_REG_05_RESERVED 0x05
#define BG_RF95_REG_06_FRF_MSB 0x06
#define BG_RF95_REG_07_FRF_MID 0x07
#define BG_RF95_REG_08_FRF_LSB 0x08
#define BG_RF95_REG_09_PA_CONFIG 0x09
#define BG_RF95_REG_0A_PA_RAMP 0x0a
#define BG_RF95_REG_0B_OCP 0x0b
#define BG_RF95_REG_0C_LNA 0x0c
#define BG_RF95_REG_0D_FIFO_ADDR_PTR 0x0d
#define BG_RF95_REG_0E_FIFO_TX_BASE_ADDR 0x0e
#define BG_RF95_REG_0F_FIFO_RX_BASE_ADDR 0x0f
#define BG_RF95_REG_10_FIFO_RX_CURRENT_ADDR 0x10
#define BG_RF95_REG_11_IRQ_FLAGS_MASK 0x11
#define BG_RF95_REG_12_IRQ_FLAGS 0x12
#define BG_RF95_REG_13_RX_NB_BYTES 0x13
#define BG_RF95_REG_14_RX_HEADER_CNT_VALUE_MSB 0x14
#define BG_RF95_REG_15_RX_HEADER_CNT_VALUE_LSB 0x15
#define BG_RF95_REG_16_RX_PACKET_CNT_VALUE_MSB 0x16
#define BG_RF95_REG_17_RX_PACKET_CNT_VALUE_LSB 0x17
#define BG_RF95_REG_18_MODEM_STAT 0x18
#define BG_RF95_REG_19_PKT_SNR_VALUE 0x19
#define BG_RF95_REG_1A_PKT_RSSI_VALUE 0x1a
#define BG_RF95_REG_1B_RSSI_VALUE 0x1b
#define BG_RF95_REG_1C_HOP_CHANNEL 0x1c
#define BG_RF95_REG_1D_MODEM_CONFIG1 0x1d
#define BG_RF95_REG_1E_MODEM_CONFIG2 0x1e
#define BG_RF95_REG_1F_SYMB_TIMEOUT_LSB 0x1f
#define BG_RF95_REG_20_PREAMBLE_MSB 0x20
#define BG_RF95_REG_21_PREAMBLE_LSB 0x21
#define BG_RF95_REG_22_PAYLOAD_LENGTH 0x22
#define BG_RF95_REG_23_MAX_PAYLOAD_LENGTH 0x23
#define BG_RF95_REG_24_HOP_PERIOD 0x24
#define BG_RF95_REG_25_FIFO_RX_BYTE_ADDR 0x25
#define BG_RF95_REG_26_MODEM_CONFIG3 0x26
#define BG_RF95_REG_40_DIO_MAPPING1 0x40
#define BG_RF95_REG_41_DIO_MAPPING2 0x41
#define BG_RF95_REG_42_VERSION 0x42
#define BG_RF95_REG_4B_TCXO 0x4b
#define BG_RF95_REG_4D_PA_DAC 0x4d
#define BG_RF95_REG_5B_FORMER_TEMP 0x5b
#define BG_RF95_REG_61_AGC_REF 0x61
#define BG_RF95_REG_62_AGC_THRESH1 0x62
#define BG_RF95_REG_63_AGC_THRESH2 0x63
#define BG_RF95_REG_64_AGC_THRESH3 0x64
// BG_RF95_REG_01_OP_MODE 0x01
#define BG_RF95_LONG_RANGE_MODE 0x80
#define BG_RF95_ACCESS_SHARED_REG 0x40
#define BG_RF95_MODE 0x07
#define BG_RF95_MODE_SLEEP 0x00
#define BG_RF95_MODE_STDBY 0x01
#define BG_RF95_MODE_FSTX 0x02
#define BG_RF95_MODE_TX 0x03
#define BG_RF95_MODE_FSRX 0x04
#define BG_RF95_MODE_RXCONTINUOUS 0x05
#define BG_RF95_MODE_RXSINGLE 0x06
#define BG_RF95_MODE_CAD 0x07
// BG_RF95_REG_09_PA_CONFIG 0x09
#define BG_RF95_PA_SELECT 0x80
#define BG_RF95_MAX_POWER 0x70
#define BG_RF95_OUTPUT_POWER 0x0f
// BG_RF95_REG_0A_PA_RAMP 0x0a
#define BG_RF95_LOW_PN_TX_PLL_OFF 0x10
#define BG_RF95_PA_RAMP 0x0f
#define BG_RF95_PA_RAMP_3_4MS 0x00
#define BG_RF95_PA_RAMP_2MS 0x01
#define BG_RF95_PA_RAMP_1MS 0x02
#define BG_RF95_PA_RAMP_500US 0x03
#define BG_RF95_PA_RAMP_250US 0x0
#define BG_RF95_PA_RAMP_125US 0x05
#define BG_RF95_PA_RAMP_100US 0x06
#define BG_RF95_PA_RAMP_62US 0x07
#define BG_RF95_PA_RAMP_50US 0x08
#define BG_RF95_PA_RAMP_40US 0x09
#define BG_RF95_PA_RAMP_31US 0x0a
#define BG_RF95_PA_RAMP_25US 0x0b
#define BG_RF95_PA_RAMP_20US 0x0c
#define BG_RF95_PA_RAMP_15US 0x0d
#define BG_RF95_PA_RAMP_12US 0x0e
#define BG_RF95_PA_RAMP_10US 0x0f
// BG_RF95_REG_0B_OCP 0x0b
#define BG_RF95_OCP_ON 0x20
#define BG_RF95_OCP_TRIM 0x1f
// BG_RF95_REG_0C_LNA 0x0c
#define BG_RF95_LNA_GAIN 0xe0
#define BG_RF95_LNA_BOOST 0x03
#define BG_RF95_LNA_BOOST_DEFAULT 0x00
#define BG_RF95_LNA_BOOST_150PC 0x11
// BG_RF95_REG_11_IRQ_FLAGS_MASK 0x11
#define BG_RF95_RX_TIMEOUT_MASK 0x80
#define BG_RF95_RX_DONE_MASK 0x40
#define BG_RF95_PAYLOAD_CRC_ERROR_MASK 0x20
#define BG_RF95_VALID_HEADER_MASK 0x10
#define BG_RF95_TX_DONE_MASK 0x08
#define BG_RF95_CAD_DONE_MASK 0x04
#define BG_RF95_FHSS_CHANGE_CHANNEL_MASK 0x02
#define BG_RF95_CAD_DETECTED_MASK 0x01
// BG_RF95_REG_12_IRQ_FLAGS 0x12
#define BG_RF95_RX_TIMEOUT 0x80
#define BG_RF95_RX_DONE 0x40
#define BG_RF95_PAYLOAD_CRC_ERROR 0x20
#define BG_RF95_VALID_HEADER 0x10
#define BG_RF95_TX_DONE 0x08
#define BG_RF95_CAD_DONE 0x04
#define BG_RF95_FHSS_CHANGE_CHANNEL 0x02
#define BG_RF95_CAD_DETECTED 0x01
// BG_RF95_REG_18_MODEM_STAT 0x18
#define BG_RF95_RX_CODING_RATE 0xe0
#define BG_RF95_MODEM_STATUS_CLEAR 0x10
#define BG_RF95_MODEM_STATUS_HEADER_INFO_VALID 0x08
#define BG_RF95_MODEM_STATUS_RX_ONGOING 0x04
#define BG_RF95_MODEM_STATUS_SIGNAL_SYNCHRONIZED 0x02
#define BG_RF95_MODEM_STATUS_SIGNAL_DETECTED 0x01
// BG_RF95_REG_1C_HOP_CHANNEL 0x1c
#define BG_RF95_PLL_TIMEOUT 0x80
#define BG_RF95_RX_PAYLOAD_CRC_IS_ON 0x40
#define BG_RF95_FHSS_PRESENT_CHANNEL 0x3f
// BG_RF95_REG_1D_MODEM_CONFIG1 0x1d
#define BG_RF95_BW 0xc0
#define BG_RF95_BW_125KHZ 0x00
#define BG_RF95_BW_250KHZ 0x40
#define BG_RF95_BW_500KHZ 0x80
#define BG_RF95_BW_RESERVED 0xc0
#define BG_RF95_CODING_RATE 0x38
#define BG_RF95_CODING_RATE_4_5 0x00
#define BG_RF95_CODING_RATE_4_6 0x08
#define BG_RF95_CODING_RATE_4_7 0x10
#define BG_RF95_CODING_RATE_4_8 0x18
#define BG_RF95_IMPLICIT_HEADER_MODE_ON 0x04
#define BG_RF95_RX_PAYLOAD_CRC_ON 0x02
#define BG_RF95_LOW_DATA_RATE_OPTIMIZE 0x01
// BG_RF95_REG_1E_MODEM_CONFIG2 0x1e
#define BG_RF95_SPREADING_FACTOR 0xf0
#define BG_RF95_SPREADING_FACTOR_64CPS 0x60
#define BG_RF95_SPREADING_FACTOR_128CPS 0x70
#define BG_RF95_SPREADING_FACTOR_256CPS 0x80
#define BG_RF95_SPREADING_FACTOR_512CPS 0x90
#define BG_RF95_SPREADING_FACTOR_1024CPS 0xa0
#define BG_RF95_SPREADING_FACTOR_2048CPS 0xb0
#define BG_RF95_SPREADING_FACTOR_4096CPS 0xc0
#define BG_RF95_TX_CONTINUOUS_MOE 0x08
#define BG_RF95_AGC_AUTO_ON 0x04
#define BG_RF95_SYM_TIMEOUT_MSB 0x03
// BG_RF95_REG_4D_PA_DAC 0x4d
#define BG_RF95_PA_DAC_DISABLE 0x04
#define BG_RF95_PA_DAC_ENABLE 0x07
/////////////////////////////////////////////////////////////////////
/// \class BG_RF95 BG_RF95.h <BG_RF95.h>
/// \brief Driver to send and receive unaddressed, unreliable datagrams via a LoRa
/// capable radio transceiver.
///
/// For Semtech SX1276/77/78/79 and HopeRF RF95/96/97/98 and other similar LoRa capable radios.
/// Based on http://www.hoperf.com/upload/rf/RFM95_96_97_98W.pdf
/// and http://www.hoperf.cn/upload/rfchip/RF96_97_98.pdf
/// and http://www.semtech.com/images/datasheet/LoraDesignGuide_STD.pdf
/// and http://www.semtech.com/images/datasheet/sx1276.pdf
/// and http://www.semtech.com/images/datasheet/sx1276_77_78_79.pdf
/// FSK/GFSK/OOK modes are not (yet) supported.
///
/// Works with
/// - the excellent MiniWirelessLoRa from Anarduino http://www.anarduino.com/miniwireless
/// - The excellent Modtronix inAir4 http://modtronix.com/inair4.html
/// and inAir9 modules http://modtronix.com/inair9.html.
/// - the excellent Rocket Scream Mini Ultra Pro with the RFM95W
/// http://www.rocketscream.com/blog/product/mini-ultra-pro-with-radio/
/// - Lora1276 module from NiceRF http://www.nicerf.com/product_view.aspx?id=99
/// - Adafruit Feather M0 with RFM95
///
/// \par Overview
///
/// This class provides basic functions for sending and receiving unaddressed,
/// unreliable datagrams of arbitrary length to 251 octets per packet.
///
/// Manager classes may use this class to implement reliable, addressed datagrams and streams,
/// mesh routers, repeaters, translators etc.
///
/// Naturally, for any 2 radios to communicate that must be configured to use the same frequency and
/// modulation scheme.
///
/// This Driver provides an object-oriented interface for sending and receiving data messages with Hope-RF
/// RFM95/96/97/98(W), Semtech SX1276/77/78/79 and compatible radio modules in LoRa mode.
///
/// The Hope-RF (http://www.hoperf.com) RFM95/96/97/98(W) and Semtech SX1276/77/78/79 is a low-cost ISM transceiver
/// chip. It supports FSK, GFSK, OOK over a wide range of frequencies and
/// programmable data rates, and it also supports the proprietary LoRA (Long Range) mode, which
/// is the only mode supported in this RadioHead driver.
///
/// This Driver provides functions for sending and receiving messages of up
/// to 251 octets on any frequency supported by the radio, in a range of
/// predefined Bandwidths, Spreading Factors and Coding Rates. Frequency can be set with
/// 61Hz precision to any frequency from 240.0MHz to 960.0MHz. Caution: most modules only support a more limited
/// range of frequencies due to antenna tuning.
///
/// Up to 2 modules can be connected to an Arduino (3 on a Mega),
/// permitting the construction of translators and frequency changers, etc.
///
/// Support for other features such as transmitter power control etc is
/// also provided.
///
/// Tested on MinWirelessLoRa with arduino-1.0.5
/// on OpenSuSE 13.1.
/// Also tested with Teensy3.1, Modtronix inAir4 and Arduino 1.6.5 on OpenSuSE 13.1
///
/// \par Packet Format
///
/// All messages sent and received by this BG_RF95 Driver conform to this packet format:
///
/// - LoRa mode:
/// - 8 symbol PREAMBLE
/// - Explicit header with header CRC (handled internally by the radio)
/// - 4 octets HEADER: (TO, FROM, ID, FLAGS)
/// - 0 to 251 octets DATA
/// - CRC (handled internally by the radio)
///
/// \par Connecting RFM95/96/97/98 and Semtech SX1276/77/78/79 to Arduino
///
/// We tested with Anarduino MiniWirelessLoRA, which is an Arduino Duemilanove compatible with a RFM96W
/// module on-board. Therefore it needs no connections other than the USB
/// programming connection and an antenna to make it work.
///
/// If you have a bare RFM95/96/97/98 that you want to connect to an Arduino, you
/// might use these connections (untested): CAUTION: you must use a 3.3V type
/// Arduino, otherwise you will also need voltage level shifters between the
/// Arduino and the RFM95. CAUTION, you must also ensure you connect an
/// antenna.
///
/// \code
/// Arduino RFM95/96/97/98
/// GND----------GND (ground in)
/// 3V3----------3.3V (3.3V in)
///
/// SS pin D10----------NSS (CS chip select in)
/// SCK pin D13----------SCK (SPI clock in)
/// MOSI pin D11----------MOSI (SPI Data in)
/// MISO pin D12----------MISO (SPI Data out)
/// \endcode
/// With these connections, you can then use the default constructor BG_RF95().
/// You can override the default settings for the SS pin and the interrupt in
/// the BG_RF95 constructor if you wish to connect the slave select SS to other
/// than the normal one for your Arduino (D10 for Diecimila, Uno etc and D53
/// for Mega) or the interrupt request to other than pin D2 (Caution,
/// different processors have different constraints as to the pins available
/// for interrupts).
///
/// You can connect a Modtronix inAir4 or inAir9 directly to a 3.3V part such as a Teensy 3.1 like
/// this (tested).
/// \code
/// Teensy inAir4 inAir9
/// GND----------GND (ground in)
/// 3V3----------3.3V (3.3V in)
/// interrupt 0 pin D2-----------D00 (interrupt request out)
/// SS pin D10----------CS (CS chip select in)
/// SCK pin D13----------CK (SPI clock in)
/// MOSI pin D11----------SI (SPI Data in)
/// MISO pin D12----------SO (SPI Data out)
/// \endcode
/// With these connections, you can then use the default constructor BG_RF95().
/// you must also set the transmitter power with useRFO:
/// driver.setTxPower(13, true);
///
/// Note that if you are using Modtronix inAir4 or inAir9,or any other module which uses the
/// transmitter RFO pins and not the PA_BOOST pins
/// that you must configure the power transmitter power for -1 to 14 dBm and with useRFO true.
/// Failure to do that will result in extremely low transmit powers.
///
/// If you have an Arduino M0 Pro from arduino.org,
/// you should note that you cannot use Pin 2 for the interrupt line
/// (Pin 2 is for the NMI only). The same comments apply to Pin 4 on Arduino Zero from arduino.cc.
/// Instead you can use any other pin (we use Pin 3) and initialise RH_RF69 like this:
/// \code
/// // Slave Select is pin 10, interrupt is Pin 3
/// BG_RF95 driver(10, 3);
/// \endcode
///
/// If you have a Rocket Scream Mini Ultra Pro with the RFM95W:
/// - Ensure you have Arduino SAMD board support 1.6.5 or later in Arduino IDE 1.6.8 or later.
/// - The radio SS is hardwired to pin D5 and the DIO0 interrupt to pin D2,
/// so you need to initialise the radio like this:
/// \code
/// BG_RF95 driver(5, 2);
/// \endcode
/// - The name of the serial port on that board is 'SerialUSB', not 'Serial', so this may be helpful at the top of our
/// sample sketches:
/// \code
/// #define Serial SerialUSB
/// \endcode
/// - You also need this in setup before radio initialisation
/// \code
/// // Ensure serial flash is not interfering with radio communication on SPI bus
/// pinMode(4, OUTPUT);
/// digitalWrite(4, HIGH);
/// \endcode
/// - and if you have a 915MHz part, you need this after driver/manager intitalisation:
/// \code
/// rf95.setFrequency(915.0);
/// \endcode
/// which adds up to modifying sample sketches something like:
/// \code
/// #include <SPI.h>
/// #include <BG_RF95.h>
/// BG_RF95 rf95(5, 2); // Rocket Scream Mini Ultra Pro with the RFM95W
/// #define Serial SerialUSB
///
/// void setup()
/// {
/// // Ensure serial flash is not interfering with radio communication on SPI bus
/// pinMode(4, OUTPUT);
/// digitalWrite(4, HIGH);
///
/// Serial.begin(9600);
/// while (!Serial) ; // Wait for serial port to be available
/// if (!rf95.init())
/// Serial.println("init failed");
/// rf95.setFrequency(915.0);
/// }
/// ...
/// \endcode
///
/// For Adafruit Feather M0 with RFM95, construct the driver like this:
/// \code
/// BG_RF95 rf95(8, 3);
/// \endcode
///
/// It is possible to have 2 or more radios connected to one Arduino, provided
/// each radio has its own SS and interrupt line (SCK, SDI and SDO are common
/// to all radios)
///
/// Caution: on some Arduinos such as the Mega 2560, if you set the slave
/// select pin to be other than the usual SS pin (D53 on Mega 2560), you may
/// need to set the usual SS pin to be an output to force the Arduino into SPI
/// master mode.
///
/// Caution: Power supply requirements of the RFM module may be relevant in some circumstances:
/// RFM95/96/97/98 modules are capable of pulling 120mA+ at full power, where Arduino's 3.3V line can
/// give 50mA. You may need to make provision for alternate power supply for
/// the RFM module, especially if you wish to use full transmit power, and/or you have
/// other shields demanding power. Inadequate power for the RFM is likely to cause symptoms such as:
/// - reset's/bootups terminate with "init failed" messages
/// - random termination of communication after 5-30 packets sent/received
/// - "fake ok" state, where initialization passes fluently, but communication doesn't happen
/// - shields hang Arduino boards, especially during the flashing
///
/// \par Interrupts
///
/// The BG_RF95 driver uses interrupts to react to events in the RFM module,
/// such as the reception of a new packet, or the completion of transmission
/// of a packet. The BG_RF95 driver interrupt service routine reads status from
/// and writes data to the the RFM module via the SPI interface. It is very
/// important therefore, that if you are using the BG_RF95 driver with another
/// SPI based deviced, that you disable interrupts while you transfer data to
/// and from that other device. Use cli() to disable interrupts and sei() to
/// reenable them.
///
/// \par Memory
///
/// The BG_RF95 driver requires non-trivial amounts of memory. The sample
/// programs all compile to about 8kbytes each, which will fit in the
/// flash proram memory of most Arduinos. However, the RAM requirements are
/// more critical. Therefore, you should be vary sparing with RAM use in
/// programs that use the BG_RF95 driver.
///
/// It is often hard to accurately identify when you are hitting RAM limits on Arduino.
/// The symptoms can include:
/// - Mysterious crashes and restarts
/// - Changes in behaviour when seemingly unrelated changes are made (such as adding print() statements)
/// - Hanging
/// - Output from Serial.print() not appearing
///
/// \par Range
///
/// We have made some simple range tests under the following conditions:
/// - rf95_client base station connected to a VHF discone antenna at 8m height above ground
/// - rf95_server mobile connected to 17.3cm 1/4 wavelength antenna at 1m height, no ground plane.
/// - Both configured for 13dBm, 434MHz, Bw = 125 kHz, Cr = 4/8, Sf = 4096chips/symbol, CRC on. Slow+long range
/// - Minimum reported RSSI seen for successful comms was about -91
/// - Range over flat ground through heavy trees and vegetation approx 2km.
/// - At 20dBm (100mW) otherwise identical conditions approx 3km.
/// - At 20dBm, along salt water flat sandy beach, 3.2km.
///
/// It should be noted that at this data rate, a 12 octet message takes 2 seconds to transmit.
///
/// At 20dBm (100mW) with Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on.
/// (Default medium range) in the conditions described above.
/// - Range over flat ground through heavy trees and vegetation approx 2km.
///
/// \par Transmitter Power
///
/// You can control the transmitter power on the RF transceiver
/// with the BG_RF95::setTxPower() function. The argument can be any of
/// +5 to +23 (for modules that use PA_BOOST)
/// -1 to +14 (for modules that use RFO transmitter pin)
/// The default is 13. Eg:
/// \code
/// driver.setTxPower(10); // use PA_BOOST transmitter pin
/// driver.setTxPower(10, true); // use PA_RFO pin transmitter pin
/// \endcode
///
/// We have made some actual power measurements against
/// programmed power for Anarduino MiniWirelessLoRa (which has RFM96W-433Mhz installed)
/// - MiniWirelessLoRa RFM96W-433Mhz, USB power
/// - 30cm RG316 soldered direct to RFM96W module ANT and GND
/// - SMA connector
/// - 12db attenuator
/// - SMA connector
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power Measured Power
/// dBm dBm
/// 5 5
/// 7 7
/// 9 8
/// 11 11
/// 13 13
/// 15 15
/// 17 16
/// 19 18
/// 20 20
/// 21 21
/// 22 22
/// 23 23
/// \endcode
///
/// We have also measured the actual power output from a Modtronix inAir4 http://modtronix.com/inair4.html
/// connected to a Teensy 3.1:
/// Teensy 3.1 this is a 3.3V part, connected directly to:
/// Modtronix inAir4 with SMA antenna connector, connected as above:
/// 10cm SMA-SMA cable
/// - MiniKits AD8307 HF/VHF Power Head (calibrated against Rohde&Schwartz 806.2020 test set)
/// - Tektronix TDS220 scope to measure the Vout from power head
/// \code
/// Program power Measured Power
/// dBm dBm
/// -1 0
/// 1 2
/// 3 4
/// 5 7
/// 7 10
/// 9 13
/// 11 14.2
/// 13 15
/// 14 16
/// \endcode
/// (Caution: we dont claim laboratory accuracy for these power measurements)
/// You would not expect to get anywhere near these powers to air with a simple 1/4 wavelength wire antenna.
class BG_RF95 : public RHSPIDriver
{
public:
/// \brief Defines register values for a set of modem configuration registers
///
/// Defines register values for a set of modem configuration registers
/// that can be passed to setModemRegisters() if none of the choices in
/// ModemConfigChoice suit your need setModemRegisters() writes the
/// register values from this structure to the appropriate registers
/// to set the desired spreading factor, coding rate and bandwidth
typedef struct
{
uint8_t reg_1d; ///< Value for register BG_RF95_REG_1D_MODEM_CONFIG1
uint8_t reg_1e; ///< Value for register BG_RF95_REG_1E_MODEM_CONFIG2
uint8_t reg_26; ///< Value for register BG_RF95_REG_26_MODEM_CONFIG3
} ModemConfig;
/// Choices for setModemConfig() for a selected subset of common
/// data rates. If you need another configuration,
/// determine the necessary settings and call setModemRegisters() with your
/// desired settings. It might be helpful to use the LoRa calculator mentioned in
/// http://www.semtech.com/images/datasheet/LoraDesignGuide_STD.pdf
/// These are indexes into MODEM_CONFIG_TABLE. We strongly recommend you use these symbolic
/// definitions and not their integer equivalents: its possible that new values will be
/// introduced in later versions (though we will try to avoid it).
/// Caution: if you are using slow packet rates and long packets with RHReliableDatagram or subclasses
/// you may need to change the RHReliableDatagram timeout for reliable operations.
typedef enum
{
Bw125Cr45Sf128 = 0, ///< Bw = 125 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Default medium range
Bw500Cr45Sf128, ///< Bw = 500 kHz, Cr = 4/5, Sf = 128chips/symbol, CRC on. Fast+short range
Bw31_25Cr48Sf512, ///< Bw = 31.25 kHz, Cr = 4/8, Sf = 512chips/symbol, CRC on. Slow+long range
Bw125Cr48Sf4096, ///< Bw = 125 kHz, Cr = 4/8, Sf = 4096chips/symbol, CRC on. Slow+long range
Bw125Cr45Sf4096, ///< APRS
} ModemConfigChoice;
/// Constructor. You can have multiple instances, but each instance must have its own
/// interrupt and slave select pin. After constructing, you must call init() to initialise the interface
/// and the radio module. A maximum of 3 instances can co-exist on one processor, provided there are sufficient
/// distinct interrupt lines, one for each instance.
/// \param[in] slaveSelectPin the Arduino pin number of the output to use to select the RH_RF22 before
/// accessing it. Defaults to the normal SS pin for your Arduino (D10 for Diecimila, Uno etc, D53 for Mega, D10 for Maple)
/// \param[in] interruptPin The interrupt Pin number that is connected to the RFM DIO0 interrupt line.
/// Defaults to pin 2, as required by Anarduino MinWirelessLoRa module.
/// Caution: You must specify an interrupt capable pin.
/// On many Arduino boards, there are limitations as to which pins may be used as interrupts.
/// On Leonardo pins 0, 1, 2 or 3. On Mega2560 pins 2, 3, 18, 19, 20, 21. On Due and Teensy, any digital pin.
/// On Arduino Zero from arduino.cc, any digital pin other than 4.
/// On Arduino M0 Pro from arduino.org, any digital pin other than 2.
/// On other Arduinos pins 2 or 3.
/// See http://arduino.cc/en/Reference/attachInterrupt for more details.
/// On Chipkit Uno32, pins 38, 2, 7, 8, 35.
/// On other boards, any digital pin may be used.
/// \param[in] spi Pointer to the SPI interface object to use.
/// Defaults to the standard Arduino hardware SPI interface
BG_RF95(uint8_t slaveSelectPin = SS, uint8_t interruptPin = 2, RHGenericSPI& spi = hardware_spi);
/// Initialise the Driver transport hardware and software.
/// Make sure the Driver is properly configured before calling init().
/// \return true if initialisation succeeded.
virtual bool init();
/// Prints the value of all chip registers
/// to the Serial device if RH_HAVE_SERIAL is defined for the current platform
/// For debugging purposes only.
/// \return true on success
bool printRegisters();
/// Sets all the registered required to configure the data modem in the RF95/96/97/98, including the bandwidth,
/// spreading factor etc. You can use this to configure the modem with custom configurations if none of the
/// canned configurations in ModemConfigChoice suit you.
/// \param[in] config A ModemConfig structure containing values for the modem configuration registers.
void setModemRegisters(const ModemConfig* config);
/// Select one of the predefined modem configurations. If you need a modem configuration not provided
/// here, use setModemRegisters() with your own ModemConfig.
/// \param[in] index The configuration choice.
/// \return true if index is a valid choice.
bool setModemConfig(ModemConfigChoice index);
/// Tests whether a new message is available
/// from the Driver.
/// On most drivers, this will also put the Driver into RHModeRx mode until
/// a message is actually received by the transport, when it wil be returned to RHModeIdle.
/// This can be called multiple times in a timeout loop
/// \return true if a new, complete, error-free uncollected message is available to be retreived by recv()
virtual bool available();
/// Turns the receiver on if it not already on.
/// If there is a valid message available, copy it to buf and return true
/// else return false.
/// If a message is copied, *len is set to the length (Caution, 0 length messages are permitted).
/// You should be sure to call this function frequently enough to not miss any messages
/// It is recommended that you call it in your main loop.
/// \param[in] buf Location to copy the received message
/// \param[in,out] len Pointer to available space in buf. Set to the actual number of octets copied.
/// \return true if a valid message was copied to buf
virtual bool recv(uint8_t* buf, uint8_t* len);
// added BG APRS Packets are sent with 3-Byte header
// turn on promiscuous
virtual bool recvAPRS(uint8_t* buf, uint8_t* len);
/// Waits until any previous transmit packet is finished being transmitted with waitPacketSent().
/// Then loads a message into the transmitter and starts the transmitter. Note that a message length
/// of 0 is permitted.
/// \param[in] data Array of data to be sent
/// \param[in] len Number of bytes of data to send
/// \return true if the message length was valid and it was correctly queued for transmit
virtual bool send(const uint8_t* data, uint8_t len);
// Send APRS Header Format
virtual bool sendAPRS(const uint8_t* data, uint8_t len);
virtual uint8_t lastSNR();
/// Sets the length of the preamble
/// in bytes.
/// Caution: this should be set to the same
/// value on all nodes in your network. Default is 8.
/// Sets the message preamble length in BG_RF95_REG_??_PREAMBLE_?SB
/// \param[in] bytes Preamble length in bytes.
void setPreambleLength(uint16_t bytes);
/// Returns the maximum message length
/// available in this Driver.
/// \return The maximum legal message length
virtual uint8_t maxMessageLength();
/// Sets the transmitter and receiver
/// centre frequency.
/// \param[in] centre Frequency in MHz. 137.0 to 1020.0. Caution: RFM95/96/97/98 comes in several
/// different frequency ranges, and setting a frequency outside that range of your radio will probably not work
/// \return true if the selected frquency centre is within range
bool setFrequency(float centre);
/// If current mode is Rx or Tx changes it to Idle. If the transmitter or receiver is running,
/// disables them.
void setModeIdle();
/// If current mode is Tx or Idle, changes it to Rx.
/// Starts the receiver in the RF95/96/97/98.
void setModeRx();
/// If current mode is Rx or Idle, changes it to Rx. F
/// Starts the transmitter in the RF95/96/97/98.
void setModeTx();
/// Sets the transmitter power output level, and configures the transmitter pin.
/// Be a good neighbour and set the lowest power level you need.
/// Some SX1276/77/78/79 and compatible modules (such as RFM95/96/97/98)
/// use the PA_BOOST transmitter pin for high power output (and optionally the PA_DAC)
/// while some (such as the Modtronix inAir4 and inAir9)
/// use the RFO transmitter pin for lower power but higher efficiency.
/// You must set the appropriate power level and useRFO argument for your module.
/// Check with your module manufacturer which transmtter pin is used on your module
/// to ensure you are setting useRFO correctly.
/// Failure to do so will result in very low
/// transmitter power output.
/// Caution: legal power limits may apply in certain countries.
/// After init(), the power will be set to 13dBm, with useRFO false (ie PA_BOOST enabled).
/// \param[in] power Transmitter power level in dBm. For RFM95/96/97/98 LORA with useRFO false,
/// valid values are from +5 to +23.
/// For Modtronix inAir4 and inAir9 with useRFO true (ie RFO pins in use),
/// valid values are from -1 to 14.
/// \param[in] useRFO If true, enables the use of the RFO transmitter pins instead of
/// the PA_BOOST pin (false). Choose the correct setting for your module.
void setTxPower(int8_t power, bool useRFO = false);
/// Sets the radio into low-power sleep mode.
/// If successful, the transport will stay in sleep mode until woken by
/// changing mode it idle, transmit or receive (eg by calling send(), recv(), available() etc)
/// Caution: there is a time penalty as the radio takes a finite time to wake from sleep mode.
/// \return true if sleep mode was successfully entered.
virtual bool sleep();
protected:
/// This is a low level function to handle the interrupts for one instance of BG_RF95.
/// Called automatically by isr*()
/// Should not need to be called by user code.
void handleInterrupt();
/// Examine the revceive buffer to determine whether the message is for this node
void validateRxBuf();
/// Clear our local receive buffer
void clearRxBuf();
private:
/// Low level interrupt service routine for device connected to interrupt 0
static void isr0();
/// Low level interrupt service routine for device connected to interrupt 1
static void isr1();
/// Low level interrupt service routine for device connected to interrupt 1
static void isr2();
/// Array of instances connected to interrupts 0 and 1
static BG_RF95* _deviceForInterrupt[];
/// Index of next interrupt number to use in _deviceForInterrupt
static uint8_t _interruptCount;
/// The configured interrupt pin connected to this instance
uint8_t _interruptPin;
/// The index into _deviceForInterrupt[] for this device (if an interrupt is already allocated)
/// else 0xff
uint8_t _myInterruptIndex;
/// Number of octets in the buffer
volatile uint8_t _bufLen;
/// The receiver/transmitter buffer
uint8_t _buf[BG_RF95_MAX_PAYLOAD_LEN];
/// True when there is a valid message in the buffer
volatile bool _rxBufValid;
};
/// @example rf95_client.pde
/// @example rf95_server.pde
/// @example rf95_reliable_datagram_client.pde
/// @example rf95_reliable_datagram_server.pde
#endif

603
src/TTGO_Test.ino 100644
View File

@ -0,0 +1,603 @@
// Arduino Tracker for LoRA APRS
//
// TTGO T-Beam includes GPS module + optional DHT22 (not yet DONE)
//
// can be used as tracker only, tracker plus weather reports (temperature and humidity) or weather reports station only
//
// updated from OE1ACM sketch by OE3CJB to enable WX data to be sent via LoRa APRS.
// one package is with position and battery voltage
// the next is with weather data in APRS format
//
// licensed under CC BY-NC-SA
//
// last update: 24.11.2018
// modifications: select mode during compilation to select model
// USER DATA - USE THESE LINES TO MODIFY YOUR PREFERENCES
// Your Callsign
String Tcall="OE3CJB-7"; //your Call Sign for normal position reports
String wxTcall="OE3CJB-7"; //your Call Sign for weather reports
// Your symbol table and symbol for position reports incl. battery voltage
String sTable="/"; //Primer
//String sTable="\"; //Alternativ
// String sSymbol="_"; //symbol code Weather Station
// String sSymbol=">"; //symbol code CAR
String sSymbol="["; //symbol code RUNNER
// String sSymbol="b"; //symbol code BICYCLE
// String sSymbol="<"; //symbol code MOTORCYCLE
// SEND_WX - if true the tracker sends WX reports - needs DHT22 connected at Pin 10
// when FIXED_POSITION is false then it sends alternating normal position packets and weather report packets
#define SEND_WX false
// Your symbol table and symbol for weather reports
String wxTable="/"; //Primer
String wxSymbol="_"; //Symbol Code Weather Station
// String wxSymbol="W"; //Symbol Code Weather Station/
#define FIXED_POSITION false
// set to true if you want to use fixed position (position defined below) instead, or to false if you want to use GPS data
// also stops sending normal position reports when sending weather reports is active (SEND_WX true)
#define LATITUDE "4813.62N" // please in APRS notation DDMM.mmN or DDMM.mmS used for FIXED_POSITION
#define LONGITUDE "01539.85E" // please in APRS notation DDDMM.mmE or DDDMM.mmW used for FIXED_POSITION
// ^^^^^LATITUDE and LONGITUDE only used when FIXED_POSITION is true
// Tracker setting: use these lines to modify the tracker behaviour
#define TXFREQ 433.775 // Transmit frequency in MHz
#define TXdbmW 18 // Transmit power in dBm
#define TXenablePA 0 // switch internal power amplifier on (1) or off (0)
// Transmit intervall
unsigned long nextTX = 60000L; // Send every 60 secs
// unsigned long nextTX = 5000L; // Send every 5 secs - FOR TESTS ONLY - NO CONNECTION TO SERVER PLEASE!!!!
// STOP EDITING from here on - except you know what you do :-)
#define DEBUG false // used for debugging purposes , e.g. turning on special serial or display logging
//Hardware definitions
/* for feather32u4
#define RFM95_CS 8
#define RFM95_RST 4
#define RFM95_INT 7
*/
//Variables for DHT22 temperature and humidity sensor
int chk;
float hum; //Stores humidity value
float temp; //Stores temperature value
//other global Variables
String Textzeile1, Textzeile2;
//!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
//PINs used for HW extensions
// Pin for battery voltage -> bei T-Beam ADC1_CHANNEL_7
// #define ANALOG_PIN_0 35 // connected to battery
// Pins for GPS
static const int RXPin = 15, TXPin = 12; // changed BG A3 A2
static const uint32_t GPSBaud = 9600; //GPS
const byte TX_en = 0;
const byte RX_en = 0; //TX/RX enable 1W modul
const byte TXLED = 14; //pin number for LED on TX Tracker
// const byte GPSLED = 6; // pin gps & Heartbeat
// const byte GPSLED1 = 9; // pin gps & Heartbeat
// Pins for LoRa module
const byte lora_PReset = 23; //pin where LoRa device reset line is connected
const byte lora_PNSS = 18; //pin number where the NSS line for the LoRa device is connected.
// pin 11 MOSI
// pin 12 MISO
// pin 13 SCLK
// #define ModemConfig BG_RF95::Bw125Cr45Sf4096
#define DHTPIN 10 // what pin we're connected to
#define DHTTYPE DHT22 // DHT 22 (AM2302)
// Variables and Constants
String InputString = ""; //data on buff is copied to this string
String Outputstring = "";
String outString=""; //The new Output String with GPS Conversion RAW
float BattVolts;
#if (FIXED_POSITION)
boolean wx = true;
#else
boolean wx = false;
#endif
//byte arrays
byte lora_TXBUFF[128]; //buffer for packet to send
//byte Variables
byte lora_TXStart; //start of packet data in TXbuff
byte lora_TXEnd; //end of packet data in TXbuff
byte lora_FTXOK; //flag, set to 1 if TX OK
byte lora_TXPacketType; //type number of packet to send
byte lora_TXDestination; //destination address of packet to send
byte lora_TXSource; //source address of packet received
byte lora_FDeviceError; //flag, set to 1 if RFM98 device error
byte lora_TXPacketL; //length of packet to send, includes source, destination and packet type.
unsigned long lastTX = 0L;
// Includes
#include <Arduino.h>
#include <Adafruit_Sensor.h>
#include <SPI.h>
#include <BG_RF95.h>
// #include <string>
#include <TinyGPS++.h>
// #include <SoftwareSerial.h>
#include <math.h>
#include <DHT.h>
#include <driver/adc.h>
#include <Wire.h>
#include <Adafruit_SSD1306.h>
#include <splash.h>
#include "xtest_bw.h"
#include <Adafruit_GFX.h>
#include <Adafruit_SPITFT.h>
#include <Adafruit_SPITFT_Macros.h>
#include <gfxfont.h>
static void smartDelay(unsigned long);
void recalcGPS(void);
void sendpacket(void);
void loraSend(byte, byte, byte, byte, byte, long, byte, float);
void batt_read(void);
void writedisplaytext(String, String, String, int);
#if (SEND_WX)
DHT dht(DHTPIN, DHTTYPE); // Initialize DHT sensor for normal 16mhz Arduino
#endif
// SoftwareSerial ss(RXPin, TXPin); // The serial connection to the GPS device
HardwareSerial ss(1); // TTGO has HW serial
TinyGPSPlus gps; // The TinyGPS++ object
// checkRX
uint8_t buf[BG_RF95_MAX_MESSAGE_LEN];
uint8_t len = sizeof(buf);
// Singleton instance of the radio driver
BG_RF95 rf95(18, 26); // TTGO T-Beam has NSS @ Pin 18 and Interrupt IO @ Pin26
// initialize OLED display
#define OLED_RESET 4 // not used
Adafruit_SSD1306 display(128, 64, &Wire, OLED_RESET);
void setup()
{
pinMode(TXLED, OUTPUT);
digitalWrite(TXLED, LOW);
Serial.begin(115200);
if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) { // Address 0x3D for 128x64
for(;;); // Don't proceed, loop forever
}
digitalWrite(TXLED, HIGH);
writedisplaytext("Init:","Display OK!","",1000);
digitalWrite(TXLED, LOW);
Serial.println("Init: Display OK!");
if (!rf95.init()) {
// Serial.println("init failed");
writedisplaytext("Init:","RF95 FAILED!",":-(",1000);
Serial.println("Init: RF95 FAILED!");
for(;;); // Don't proceed, loop forever
}
digitalWrite(TXLED, HIGH);
writedisplaytext("Init:","RF95 OK!","",1000);
digitalWrite(TXLED, LOW);
Serial.println("Init: RF95 OK!");
#if !(FIXED_POSITION)
ss.begin(GPSBaud, SERIAL_8N1, 12, 15); //Startup HW serial for GPS
#endif // #if !(FIXED_POSITION)
digitalWrite(TXLED, HIGH);
writedisplaytext("Init:","GPS Serial OK!","",1000);
digitalWrite(TXLED, LOW);
Serial.println("Init: GPS Serial OK!");
adc1_config_width(ADC_WIDTH_BIT_12);
adc1_config_channel_atten(ADC1_CHANNEL_7,ADC_ATTEN_DB_6);
writedisplaytext("Init:","ADC OK!","",1000);
Serial.println("Init: ADC OK!");
rf95.setFrequency(433.775);
rf95.setModemConfig(BG_RF95::Bw125Cr45Sf4096); // hard coded because of double definition
// rf95.setModemConfig(ModemConfig); // das ist irgendwo doppelt definiert ???
rf95.setTxPower(5);
//rf95.printRegisters();
//rf95.setPromiscuousbg();
#if (SEND_WX)
dht.begin(); // DHT22 initialisieren
writedisplaytext("Init:","DHT OK!","",1000);
Serial.println("Init: DHT OK!");
#else //#if (SEND_WX)
writedisplaytext("Init:","no DHT configuration","",1000);
Serial.println("Init: no DHT configuration");
#endif //#if (SEND_WX)
digitalWrite(TXLED, HIGH);
writedisplaytext("Init:","All DONE OK!",":-D",1000);
digitalWrite(TXLED, LOW);
Serial.println("Init: ALL DONE OK! :-D");
writedisplaytext("","","",0);
}
// LOOP
void loop()
{
#if DEBUG
writedisplaytext("DEBUG","millis()",String(millis()),0);
#endif
//while(1) { if ( ss.available() ) Serial.write(ss.read());}
#if !(FIXED_POSITION)
// digitalWrite(GPSLED, HIGH);
while (ss.available() > 0) {
gps.encode(ss.read());
}
#endif // #if !(FIXED_POSITION)
if (rf95.waitAvailableTimeout(100))
{
// Should be a reply message for us now
if (rf95.recvAPRS(buf, &len))
{
// Serial.print("RX: ");
// Serial.println((char*)buf);
// Serial.print("RSSI: ");
// Serial.println(rf95.lastRssi(), DEC);
}
}
display.clearDisplay();
display.setTextColor(WHITE);
display.setTextSize(2);
display.setCursor(0,0);
display.println("LoRa-APRS");
display.setTextSize(1);
display.setCursor(0,36);
display.print("LAT: ");
display.println(String(gps.location.lat(),5));
display.setCursor(0,46);
display.print("LON: ");
display.println(String(gps.location.lng(),5));
display.setCursor(0,56);
display.print("SPD: ");
display.print(String(gps.speed.kmph(),1));
display.print(" CRS: ");
display.println(String(gps.course.deg(),0));
display.display();
smartDelay(1000);
// digitalWrite(GPSLED, LOW);
#if (FIXED_POSITION)
// if (gps.location.isUpdated() || ( (lastTX+nextTX) <= millis() ) )
if ( (lastTX+nextTX) <= millis() )
#else
if (gps.location.isValid() && ( (lastTX+nextTX) <= millis() ) )
#endif
{
digitalWrite(TXLED, HIGH);
sendpacket();
writedisplaytext("State:","Packet sent!","",250);
Serial.println("State: Packet sent!");
digitalWrite(TXLED, LOW);
} else {
if ( (lastTX+nextTX*2) <= millis() )
{
digitalWrite(TXLED, HIGH);
sendpacket();
writedisplaytext("State:","Packet sent!","",250);
Serial.println("State: Packet sent!");
digitalWrite(TXLED, LOW);
}
}
smartDelay(1000);
#if !(FIXED_POSITION)
if (millis() > 200000 && gps.charsProcessed() < 10)
{
writedisplaytext("Warning","No GPS Signal!","",1000);
Serial.println("Warning: No GPS Signal!");
}
#endif
}
/////////////////////////////////////////////////////////////////////////////////////////
// This custom version of delay() ensures that the gps object
// is being "fed".
static void smartDelay(unsigned long ms)
{
unsigned long start = millis();
do
{
#if !(FIXED_POSITION)
while (ss.available())
gps.encode(ss.read());
#endif
} while (millis() - start < ms);
}
/////////////////////////////////////////////////////////////////////////////////////////
//@APA Recalc GPS Position
void recalcGPS(){
String Ns, Ew, helper;
float Tlat, Tlon;
int Talt;
float Lat;
float Lon;
#if !(FIXED_POSITION)
Tlat=gps.location.lat();
Tlon=gps.location.lng();
Talt=gps.altitude.meters();
if(Tlat<0) { Ns = "S"; } else { Ns = "N"; }
if(Tlon<0) { Ew = "W"; } else { Ew = "E"; }
if(Tlat < 0) { Tlat= -Tlat; }
unsigned int Deg_Lat = Tlat;
Lat = 100*(Deg_Lat) + (Tlat - Deg_Lat)*60;
if(Tlon < 0) { Tlon= -Tlon; }
unsigned int Deg_Lon = Tlon;
Lon = 100*(Deg_Lon) + (Tlon - Deg_Lon)*60;
#endif
#if !(SEND_WX)
outString = "";
outString = (Tcall);
outString += ">APRS:!";
#if (FIXED_POSITION)
outString += LATITUDE;
#else
if(Tlat<10) {outString += "0"; }
outString += String(Lat,2);
outString += Ns;
#endif
outString += wxTable;
#if (FIXED_POSITION)
outString += LONGITUDE;
#else
if(Tlon<100) {outString += "0"; }
if(Tlon<10) {outString += "0"; }
outString += String(Lon,2);
outString += Ew;
#endif
outString += sSymbol;
outString += " /A=";
outString += Talt;
outString += "m Batt=";
outString += String(BattVolts,2);
outString += ("V");
#else
if ( !wx ) { // create standard position string
#if !(FIXED_POSITION)
outString = "";
outString = (Tcall);
outString += ">APRS:!";
if(Tlat<10) {outString += "0"; }
outString += String(Lat,2);
outString += Ns;
outString += sTable;
if(Tlon<100) {outString += "0"; }
if(Tlon<10) {outString += "0"; }
outString += String(Lon,2);
outString += Ew;
outString += sSymbol;
outString += " /A=";
outString += Talt;
outString += "m Batt=";
outString += String(BattVolts,2);
outString += ("V");
wx = true;
#endif
} else { // create weather report string
hum = dht.readHumidity();
// hum = 88.67;
// temp = 50.23;
temp = (dht.readTemperature() * 9/5) +32;
outString = "";
outString = (wxTcall);
outString += ">APRS:!";
#if (FIXED_POSITION)
outString += LATITUDE;
#else
if(Tlat<10) {outString += "0"; }
outString += String(Lat,2);
outString += Ns;
#endif
outString += wxTable;
#if (FIXED_POSITION)
outString += LONGITUDE;
#else
if(Tlon<100) {outString += "0"; }
if(Tlon<10) {outString += "0"; }
outString += String(Lon,2);
outString += Ew;
#endif
outString += wxSymbol;
outString += ".../...g...t";
if (temp < 0) { // negative Werte erstellen
outString += "-";
if(temp>-10) {outString += "0"; }
temp = abs(temp);
} else { // positive Werte erstellen
if(temp<100) {outString += "0"; }
if(temp<10) {outString += "0"; }
}
helper = String(temp,0);
helper.trim();
outString += helper;
outString += "r...p...P...h";
if(hum<10) {outString += "0"; }
helper = String(hum,0);
helper.trim();
outString += helper;
outString += "b......DHT22";
#if !(FIXED_POSITION)
wx = false;
#endif
}
#endif
}
/////////////////////////////////////////////////////////////////////////////////////////
void sendpacket()
{
batt_read();
Outputstring = "";
#if !(FIXED_POSITION)
if ( gps.location.isValid() || gps.location.isUpdated() )
{
// digitalWrite(GPSLED, HIGH);
//New System
//recalcEncodedGPS();
#endif
recalcGPS(); //
// digitalWrite(PLED1, HIGH);
Outputstring =outString;
loraSend(lora_TXStart, lora_TXEnd, 60, 255, 1, 10, TXdbmW, TXFREQ); //send the packet, data is in TXbuff from lora_TXStart to lora_TXEnd
#if !(FIXED_POSITION)
} else {
Outputstring = (Tcall);
Outputstring += " No GPS-Fix";
Outputstring += " Batt=";
Outputstring += String(BattVolts,2);
Outputstring += ("V ");
loraSend(lora_TXStart, lora_TXEnd, 60, 255, 1, 10, 5, TXFREQ); //send the packet, data is in TXbuff from lora_TXStart to lora_TXEnd
// digitalWrite(GPSLED, LOW);
}
#endif
// digitalWrite(PLED1, LOW);
}
///////////////////////////////////////////////////////////////////////////////////////
void loraSend(byte lora_LTXStart, byte lora_LTXEnd, byte lora_LTXPacketType, byte lora_LTXDestination, byte lora_LTXSource, long lora_LTXTimeout, byte lora_LTXPower, float lora_FREQ)
{
byte i;
byte ltemp;
if (rf95.waitAvailableTimeout(100))
{
if (rf95.recvAPRS(buf, &len))
{
// Serial.print("RX before TX: ");
// Serial.println((char*)buf);
// Serial.print("RSSI: ");
// Serial.println(rf95.lastRssi(), DEC);
}
}
// time of last TX
lastTX = millis();
ltemp = Outputstring.length();
for (i = 0; i <= ltemp; i++)
{
lora_TXBUFF[i] = Outputstring.charAt(i);
}
i--;
lora_TXEnd = i;
lora_TXBUFF[i] ='\0';
// digitalWrite(PLED1, HIGH); //LED on during packet
rf95.setModemConfig(BG_RF95::Bw125Cr45Sf4096);
rf95.setFrequency(lora_FREQ);
rf95.setTxPower(lora_LTXPower);
// Serial.print(Outputstring);
// Serial.print(" len: ");
// Serial.println(strlen(lora_TXBUFF) );
//digitalWrite(RX_en, LOW); //RX lo
//digitalWrite(TX_en, HIGH); //TX HIGH
//rf95.sendAPRS(lora_TXBUFF, sizeof(lora_TXBUFF));
rf95.sendAPRS(lora_TXBUFF, Outputstring.length());
// rf95.sendAPRS(lora_TXBUFF, lora_TXBUFF.length());
rf95.waitPacketSent();
//digitalWrite(TX_en, LOW); //TX lo
//digitalWrite(RX_en,HIGH); //RX HIGH
// digitalWrite(PLED1, LOW);
}
///////////////////////////////////////////////////////////////////////////////////////
void batt_read()
{
//int BattRead = analogRead(ANALOG_PI);
int BattRead = adc1_get_raw(ADC1_CHANNEL_7);
//lora_TXBUFF[1] = (BattRead / 256); //MSB of battery volts
//lora_TXBUFF[0] = (BattRead - (lora_TXBUFF[1] * 256)); //LSB of battery volts
BattVolts = (BattRead * (2.2 / 4096.0));
//Serial.print("lora_TXBUFF[0] ");
//Serial.println(lora_TXBUFF[0]);
//Serial.print("lora_TXBUFF[1] ");
//Serial.println(lora_TXBUFF[1]);
//Serial.println("Battery ");
//Serial.print(BattVolts, 2);
//Serial.println("V");
}
///////////////////////////////////////////////////////////////////////////////////////
void writedisplaytext(String Line1, String Line2, String Line3, int warten)
{
display.clearDisplay();
display.setTextColor(WHITE);
display.setTextSize(2);
display.setCursor(0,0);
display.println("LoRa-APRS");
display.setTextSize(1);
display.setCursor(0,36);
display.println(Line1);
display.setCursor(0,46);
display.println(Line2);
display.setCursor(0,56);
display.println(Line3);
display.display();
smartDelay(warten);
}

71
src/xtest_bw.h 100644
View File

@ -0,0 +1,71 @@
//------------------------------------------------------------------------------
// File generated by LCD Assistant
// http://en.radzio.dxp.pl/bitmap_converter/
//------------------------------------------------------------------------------
const unsigned char xtest_bw [] PROGMEM = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0xE0, 0x00, 0x00, 0x3E, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0xF0, 0x00, 0x00, 0x7C, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0xF0, 0x00, 0x00, 0xF8, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x00, 0xF8, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x01, 0xF0, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x10, 0x00, 0x3E, 0x00, 0x03, 0xE0, 0x00, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x18, 0x00, 0x1F, 0x00, 0x07, 0xC0, 0x01, 0x81, 0xFF, 0xFE, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1C, 0x00, 0x1F, 0x80, 0x0F, 0x80, 0x01, 0x81, 0xED, 0xB6, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1E, 0x00, 0x0F, 0x80, 0x1F, 0x00, 0x03, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1F, 0x00, 0x07, 0xC0, 0x1F, 0x00, 0x07, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x0F, 0x00, 0x03, 0xE0, 0x3E, 0x00, 0x0F, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x0F, 0x80, 0x01, 0xF0, 0x7C, 0x00, 0x1F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x07, 0xC0, 0x00, 0xF8, 0xF8, 0x00, 0x3E, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x03, 0xE0, 0x00, 0xF9, 0xF0, 0x00, 0x3E, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0xF0, 0x00, 0x7F, 0xE0, 0x00, 0x7C, 0x00, 0x20, 0x78, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x3F, 0xE0, 0x00, 0xF8, 0x00, 0xE0, 0xCC, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x1F, 0xC0, 0x01, 0xF0, 0x00, 0x81, 0x86, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x0F, 0x80, 0x03, 0xE0, 0x01, 0x81, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x07, 0x00, 0x07, 0xC0, 0x01, 0x01, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x06, 0x00, 0x07, 0xC0, 0x01, 0x01, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x0F, 0x80, 0x00, 0x00, 0x0F, 0x80, 0x01, 0x03, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x07, 0xC0, 0x00, 0x00, 0x1F, 0x00, 0x01, 0x02, 0x03, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x07, 0xC0, 0x00, 0x00, 0x3E, 0x00, 0x01, 0x02, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0xE0, 0x00, 0x00, 0x7C, 0x00, 0x01, 0x02, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0xF0, 0x00, 0x00, 0xF8, 0x00, 0x01, 0x86, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x00, 0xF8, 0x00, 0x00, 0x8C, 0x04, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x01, 0xF0, 0x00, 0x00, 0xF8, 0x1C, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0xE0, 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x07, 0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0xE0, 0x00, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x01, 0xF0, 0x00, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x00, 0xF8, 0x00, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0xF0, 0x00, 0x00, 0x7C, 0x00, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0xE0, 0x00, 0x00, 0x7C, 0x00, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0xE0, 0x00, 0x00, 0x3E, 0x00, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x07, 0xC0, 0x00, 0x00, 0x1F, 0x00, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x0F, 0x80, 0x00, 0x00, 0x0F, 0x80, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x1F, 0x00, 0x02, 0x00, 0x07, 0xC0, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x06, 0x00, 0x03, 0xE0, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x0F, 0x00, 0x03, 0xE0, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x0F, 0x80, 0x01, 0xF0, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x1F, 0xC0, 0x00, 0xF8, 0x01, 0x03, 0x02, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x01, 0xF0, 0x00, 0x3F, 0xE0, 0x00, 0x7C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x03, 0xE0, 0x00, 0x7F, 0xF0, 0x00, 0x3E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x07, 0xC0, 0x00, 0xF9, 0xF0, 0x00, 0x1F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x07, 0xC0, 0x00, 0xF8, 0xF8, 0x00, 0x1F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x0F, 0x80, 0x01, 0xF0, 0x7C, 0x00, 0x0F, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1F, 0x00, 0x03, 0xE0, 0x3E, 0x00, 0x07, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1E, 0x00, 0x07, 0xC0, 0x1F, 0x00, 0x03, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x1C, 0x00, 0x0F, 0x80, 0x1F, 0x00, 0x01, 0x81, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x18, 0x00, 0x1F, 0x00, 0x0F, 0x80, 0x01, 0x81, 0xFF, 0xFE, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x18, 0x00, 0x1F, 0x00, 0x07, 0xC0, 0x00, 0x81, 0xEA, 0xAA, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x3E, 0x00, 0x03, 0xE0, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x7C, 0x00, 0x01, 0xF0, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0xF8, 0x00, 0x00, 0xF8, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x01, 0xF0, 0x00, 0x00, 0xF8, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0xE0, 0x00, 0x00, 0x7C, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x03, 0xE0, 0x00, 0x00, 0x3E, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

11
test/README 100644
View File

@ -0,0 +1,11 @@
This directory is intended for PIO Unit Testing and project tests.
Unit Testing is a software testing method by which individual units of
source code, sets of one or more MCU program modules together with associated
control data, usage procedures, and operating procedures, are tested to
determine whether they are fit for use. Unit testing finds problems early
in the development cycle.
More information about PIO Unit Testing:
- https://docs.platformio.org/page/plus/unit-testing.html